Probing the Internal Atomic Charge Density Distributions in Real Space

Probing the charge density distributions in materials at atomic scale remains an extremely demanding task, particularly in real space. However, recent advances in differential phase contrast-scanning transmission electron microscopy (DPC-STEM) bring this possibility closer by directly visualizing th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2018-09, Vol.12 (9), p.8875-8881
Hauptverfasser: Sánchez-Santolino, Gabriel, Lugg, Nathan R, Seki, Takehito, Ishikawa, Ryo, Findlay, Scott D, Kohno, Yuji, Kanitani, Yuya, Tanaka, Shinji, Tomiya, Shigetaka, Ikuhara, Yuichi, Shibata, Naoya
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8881
container_issue 9
container_start_page 8875
container_title ACS nano
container_volume 12
creator Sánchez-Santolino, Gabriel
Lugg, Nathan R
Seki, Takehito
Ishikawa, Ryo
Findlay, Scott D
Kohno, Yuji
Kanitani, Yuya
Tanaka, Shinji
Tomiya, Shigetaka
Ikuhara, Yuichi
Shibata, Naoya
description Probing the charge density distributions in materials at atomic scale remains an extremely demanding task, particularly in real space. However, recent advances in differential phase contrast-scanning transmission electron microscopy (DPC-STEM) bring this possibility closer by directly visualizing the atomic electric field. DPC-STEM at atomic resolutions measures how a sub-angstrom electron probe passing through a material is affected by the atomic electric field, the field between the nucleus and the surrounding electrons. Here, we perform a fully quantitative analysis which allows us to probe the charge density distributions inside atoms, including both the positive nuclear and the screening electronic charges, with subatomic resolution and in real space. By combining state-of-the-art DPC-STEM experiments with advanced electron scattering simulations we are able to map the spatial distribution of the electron cloud within individual atomic columns. This work constitutes a crucial step toward the direct atomic scale determination of the local charge redistributions and modulations taking place in materials systems.
doi_str_mv 10.1021/acsnano.8b03712
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsnano_8b03712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b626140563</sourcerecordid><originalsourceid>FETCH-LOGICAL-a399t-3cd831406a2c325ce1977771640bbc05d2da05f9e0749789b1b86958d0a41ed13</originalsourceid><addsrcrecordid>eNp1kEtrAjEURkNpqdZ23V3JvozeTCavpfhoBaGlD-huSDJRI5qRZFz47zuidde7uXdxvo_LQeiRQJ9ATgbapqBD3ZcGqCD5FeoSRXkGkv9cX25GOugupTUAE1LwW9ShAKIQjHfR9D3WxoclblYOz0LjYtAbPGzqrbd4tNJx6fDYheSbAx771ERv9o2vQ8I-4A_Xsp87bd09ulnoTXIP591D39PJ1-g1m7-9zEbDeaapUk1GbSUpKYDr3NKcWUeUaIfwAoyxwKq80sAWyrXvKSGVIUZyxWQFuiCuIrSHBqdeG-uUoluUu-i3Oh5KAuXRSHk2Up6NtImnU2K3N1tXXfg_BS3wfALaZLmu90cB6d-6X0Isa20</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Probing the Internal Atomic Charge Density Distributions in Real Space</title><source>American Chemical Society Journals</source><creator>Sánchez-Santolino, Gabriel ; Lugg, Nathan R ; Seki, Takehito ; Ishikawa, Ryo ; Findlay, Scott D ; Kohno, Yuji ; Kanitani, Yuya ; Tanaka, Shinji ; Tomiya, Shigetaka ; Ikuhara, Yuichi ; Shibata, Naoya</creator><creatorcontrib>Sánchez-Santolino, Gabriel ; Lugg, Nathan R ; Seki, Takehito ; Ishikawa, Ryo ; Findlay, Scott D ; Kohno, Yuji ; Kanitani, Yuya ; Tanaka, Shinji ; Tomiya, Shigetaka ; Ikuhara, Yuichi ; Shibata, Naoya</creatorcontrib><description>Probing the charge density distributions in materials at atomic scale remains an extremely demanding task, particularly in real space. However, recent advances in differential phase contrast-scanning transmission electron microscopy (DPC-STEM) bring this possibility closer by directly visualizing the atomic electric field. DPC-STEM at atomic resolutions measures how a sub-angstrom electron probe passing through a material is affected by the atomic electric field, the field between the nucleus and the surrounding electrons. Here, we perform a fully quantitative analysis which allows us to probe the charge density distributions inside atoms, including both the positive nuclear and the screening electronic charges, with subatomic resolution and in real space. By combining state-of-the-art DPC-STEM experiments with advanced electron scattering simulations we are able to map the spatial distribution of the electron cloud within individual atomic columns. This work constitutes a crucial step toward the direct atomic scale determination of the local charge redistributions and modulations taking place in materials systems.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.8b03712</identifier><identifier>PMID: 30074756</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2018-09, Vol.12 (9), p.8875-8881</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a399t-3cd831406a2c325ce1977771640bbc05d2da05f9e0749789b1b86958d0a41ed13</citedby><cites>FETCH-LOGICAL-a399t-3cd831406a2c325ce1977771640bbc05d2da05f9e0749789b1b86958d0a41ed13</cites><orcidid>0000-0001-8036-707X ; 0000-0003-3548-5952 ; 0000-0001-5801-0971 ; 0000-0003-3886-005X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.8b03712$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.8b03712$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30074756$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sánchez-Santolino, Gabriel</creatorcontrib><creatorcontrib>Lugg, Nathan R</creatorcontrib><creatorcontrib>Seki, Takehito</creatorcontrib><creatorcontrib>Ishikawa, Ryo</creatorcontrib><creatorcontrib>Findlay, Scott D</creatorcontrib><creatorcontrib>Kohno, Yuji</creatorcontrib><creatorcontrib>Kanitani, Yuya</creatorcontrib><creatorcontrib>Tanaka, Shinji</creatorcontrib><creatorcontrib>Tomiya, Shigetaka</creatorcontrib><creatorcontrib>Ikuhara, Yuichi</creatorcontrib><creatorcontrib>Shibata, Naoya</creatorcontrib><title>Probing the Internal Atomic Charge Density Distributions in Real Space</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Probing the charge density distributions in materials at atomic scale remains an extremely demanding task, particularly in real space. However, recent advances in differential phase contrast-scanning transmission electron microscopy (DPC-STEM) bring this possibility closer by directly visualizing the atomic electric field. DPC-STEM at atomic resolutions measures how a sub-angstrom electron probe passing through a material is affected by the atomic electric field, the field between the nucleus and the surrounding electrons. Here, we perform a fully quantitative analysis which allows us to probe the charge density distributions inside atoms, including both the positive nuclear and the screening electronic charges, with subatomic resolution and in real space. By combining state-of-the-art DPC-STEM experiments with advanced electron scattering simulations we are able to map the spatial distribution of the electron cloud within individual atomic columns. This work constitutes a crucial step toward the direct atomic scale determination of the local charge redistributions and modulations taking place in materials systems.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEtrAjEURkNpqdZ23V3JvozeTCavpfhoBaGlD-huSDJRI5qRZFz47zuidde7uXdxvo_LQeiRQJ9ATgbapqBD3ZcGqCD5FeoSRXkGkv9cX25GOugupTUAE1LwW9ShAKIQjHfR9D3WxoclblYOz0LjYtAbPGzqrbd4tNJx6fDYheSbAx771ERv9o2vQ8I-4A_Xsp87bd09ulnoTXIP591D39PJ1-g1m7-9zEbDeaapUk1GbSUpKYDr3NKcWUeUaIfwAoyxwKq80sAWyrXvKSGVIUZyxWQFuiCuIrSHBqdeG-uUoluUu-i3Oh5KAuXRSHk2Up6NtImnU2K3N1tXXfg_BS3wfALaZLmu90cB6d-6X0Isa20</recordid><startdate>20180925</startdate><enddate>20180925</enddate><creator>Sánchez-Santolino, Gabriel</creator><creator>Lugg, Nathan R</creator><creator>Seki, Takehito</creator><creator>Ishikawa, Ryo</creator><creator>Findlay, Scott D</creator><creator>Kohno, Yuji</creator><creator>Kanitani, Yuya</creator><creator>Tanaka, Shinji</creator><creator>Tomiya, Shigetaka</creator><creator>Ikuhara, Yuichi</creator><creator>Shibata, Naoya</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8036-707X</orcidid><orcidid>https://orcid.org/0000-0003-3548-5952</orcidid><orcidid>https://orcid.org/0000-0001-5801-0971</orcidid><orcidid>https://orcid.org/0000-0003-3886-005X</orcidid></search><sort><creationdate>20180925</creationdate><title>Probing the Internal Atomic Charge Density Distributions in Real Space</title><author>Sánchez-Santolino, Gabriel ; Lugg, Nathan R ; Seki, Takehito ; Ishikawa, Ryo ; Findlay, Scott D ; Kohno, Yuji ; Kanitani, Yuya ; Tanaka, Shinji ; Tomiya, Shigetaka ; Ikuhara, Yuichi ; Shibata, Naoya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a399t-3cd831406a2c325ce1977771640bbc05d2da05f9e0749789b1b86958d0a41ed13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sánchez-Santolino, Gabriel</creatorcontrib><creatorcontrib>Lugg, Nathan R</creatorcontrib><creatorcontrib>Seki, Takehito</creatorcontrib><creatorcontrib>Ishikawa, Ryo</creatorcontrib><creatorcontrib>Findlay, Scott D</creatorcontrib><creatorcontrib>Kohno, Yuji</creatorcontrib><creatorcontrib>Kanitani, Yuya</creatorcontrib><creatorcontrib>Tanaka, Shinji</creatorcontrib><creatorcontrib>Tomiya, Shigetaka</creatorcontrib><creatorcontrib>Ikuhara, Yuichi</creatorcontrib><creatorcontrib>Shibata, Naoya</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sánchez-Santolino, Gabriel</au><au>Lugg, Nathan R</au><au>Seki, Takehito</au><au>Ishikawa, Ryo</au><au>Findlay, Scott D</au><au>Kohno, Yuji</au><au>Kanitani, Yuya</au><au>Tanaka, Shinji</au><au>Tomiya, Shigetaka</au><au>Ikuhara, Yuichi</au><au>Shibata, Naoya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing the Internal Atomic Charge Density Distributions in Real Space</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2018-09-25</date><risdate>2018</risdate><volume>12</volume><issue>9</issue><spage>8875</spage><epage>8881</epage><pages>8875-8881</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Probing the charge density distributions in materials at atomic scale remains an extremely demanding task, particularly in real space. However, recent advances in differential phase contrast-scanning transmission electron microscopy (DPC-STEM) bring this possibility closer by directly visualizing the atomic electric field. DPC-STEM at atomic resolutions measures how a sub-angstrom electron probe passing through a material is affected by the atomic electric field, the field between the nucleus and the surrounding electrons. Here, we perform a fully quantitative analysis which allows us to probe the charge density distributions inside atoms, including both the positive nuclear and the screening electronic charges, with subatomic resolution and in real space. By combining state-of-the-art DPC-STEM experiments with advanced electron scattering simulations we are able to map the spatial distribution of the electron cloud within individual atomic columns. This work constitutes a crucial step toward the direct atomic scale determination of the local charge redistributions and modulations taking place in materials systems.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30074756</pmid><doi>10.1021/acsnano.8b03712</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8036-707X</orcidid><orcidid>https://orcid.org/0000-0003-3548-5952</orcidid><orcidid>https://orcid.org/0000-0001-5801-0971</orcidid><orcidid>https://orcid.org/0000-0003-3886-005X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2018-09, Vol.12 (9), p.8875-8881
issn 1936-0851
1936-086X
language eng
recordid cdi_crossref_primary_10_1021_acsnano_8b03712
source American Chemical Society Journals
title Probing the Internal Atomic Charge Density Distributions in Real Space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T02%3A55%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20the%20Internal%20Atomic%20Charge%20Density%20Distributions%20in%20Real%20Space&rft.jtitle=ACS%20nano&rft.au=Sa%CC%81nchez-Santolino,%20Gabriel&rft.date=2018-09-25&rft.volume=12&rft.issue=9&rft.spage=8875&rft.epage=8881&rft.pages=8875-8881&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.8b03712&rft_dat=%3Cacs_cross%3Eb626140563%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/30074756&rfr_iscdi=true