Multimetallic Microparticles Increase the Potency of Rifampicin against Intracellular Mycobacterium tuberculosis

Mycobacterium tuberculosis (M.tb) has the extraordinary ability to adapt to the administration of antibiotics through the development of resistance mechanisms. By rapidly exporting drugs from within the cytosol, these pathogenic bacteria diminish antibiotic potency and drive the presentation of drug...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2018-06, Vol.12 (6), p.5228-5240
Hauptverfasser: Ellis, Timothy, Chiappi, Michele, García-Trenco, Andrés, Al-Ejji, Maryam, Sarkar, Srijata, Georgiou, Theoni K, Shaffer, Milo S. P, Tetley, Teresa D, Schwander, Stephan, Ryan, Mary P, Porter, Alexandra E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5240
container_issue 6
container_start_page 5228
container_title ACS nano
container_volume 12
creator Ellis, Timothy
Chiappi, Michele
García-Trenco, Andrés
Al-Ejji, Maryam
Sarkar, Srijata
Georgiou, Theoni K
Shaffer, Milo S. P
Tetley, Teresa D
Schwander, Stephan
Ryan, Mary P
Porter, Alexandra E
description Mycobacterium tuberculosis (M.tb) has the extraordinary ability to adapt to the administration of antibiotics through the development of resistance mechanisms. By rapidly exporting drugs from within the cytosol, these pathogenic bacteria diminish antibiotic potency and drive the presentation of drug-tolerant tuberculosis (TB). The membrane integrity of M.tb is pivotal in retaining these drug-resistant traits. Silver (Ag) and zinc oxide (ZnO) nanoparticles (NPs) are established antimicrobial agents that effectively compromise membrane stability, giving rise to increased bacterial permeability to antibiotics. In this work, biodegradable multimetallic microparticles (MMPs), containing Ag NPs and ZnO NPs, were developed for use in pulmonary delivery of antituberculous drugs to the endosomal system of M.tb-infected macrophages. Efficient uptake of MMPs by M.tb-infected THP1 cells was demonstrated using an in vitro macrophage infection model, with direct interaction between MMPs and M.tb visualized with the use of electron FIB-SEM tomography. The release of Ag NPs and ZnO NPs within the macrophage endosomal system increased the potency of the model antibiotic rifampicin by as much as 76%, realized through an increase in membrane disorder of intracellular M.tb. MMPs were effective at independently driving membrane destruction of extracellular bacilli located at the exterior face of THP1 macrophages. This MMP system presents as an effective drug delivery vehicle that could be used for the transport of antituberculous drugs such as rifampicin to infected alveolar macrophages, while increasing drug potency. By increasing M.tb membrane permeability, such a system may prove effectual in improving treatment of drug-susceptible TB in addition to M.tb strains considered drug-resistant.
doi_str_mv 10.1021/acsnano.7b08264
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsnano_7b08264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>h84350454</sourcerecordid><originalsourceid>FETCH-LOGICAL-a440t-71e2109e67ae71e793df7be20c2f4d185037d1387dcdb71a1b9c11ebdba69fc33</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EolCY2ZB3lNZO0jgeUcWjUisQAoktunauwZXzkO0M_fcEtXRjumf4zpHuR8gNZzPOUj4HHVpou5lQrEyL_IRccJkVCSuLz9NjXvAJuQxhy9hClKI4J5NUikJImV2QfjO4aBuM4JzVdGO173rw0WqHga5a7REC0viN9LWL2Ood7Qx9swaa3mrbUvgC24Y4otGDRucGB55udrpToCN6OzQ0Dgq9HlwXbLgiZwZcwOvDnZKPx4f35XOyfnlaLe_XCeQ5i4ngmHImsRCAYxYyq41QmDKdmrzm5YJlouZZKWpdK8GBK6k5R1UrKKTRWTYl8_3u-FAIHk3Ve9uA31WcVb_uqoO76uBubNzuG_2gGqyP_J-sEbjbA2Oz2naDb8cH_p37AZ8cfos</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multimetallic Microparticles Increase the Potency of Rifampicin against Intracellular Mycobacterium tuberculosis</title><source>ACS Publications</source><source>MEDLINE</source><creator>Ellis, Timothy ; Chiappi, Michele ; García-Trenco, Andrés ; Al-Ejji, Maryam ; Sarkar, Srijata ; Georgiou, Theoni K ; Shaffer, Milo S. P ; Tetley, Teresa D ; Schwander, Stephan ; Ryan, Mary P ; Porter, Alexandra E</creator><creatorcontrib>Ellis, Timothy ; Chiappi, Michele ; García-Trenco, Andrés ; Al-Ejji, Maryam ; Sarkar, Srijata ; Georgiou, Theoni K ; Shaffer, Milo S. P ; Tetley, Teresa D ; Schwander, Stephan ; Ryan, Mary P ; Porter, Alexandra E</creatorcontrib><description>Mycobacterium tuberculosis (M.tb) has the extraordinary ability to adapt to the administration of antibiotics through the development of resistance mechanisms. By rapidly exporting drugs from within the cytosol, these pathogenic bacteria diminish antibiotic potency and drive the presentation of drug-tolerant tuberculosis (TB). The membrane integrity of M.tb is pivotal in retaining these drug-resistant traits. Silver (Ag) and zinc oxide (ZnO) nanoparticles (NPs) are established antimicrobial agents that effectively compromise membrane stability, giving rise to increased bacterial permeability to antibiotics. In this work, biodegradable multimetallic microparticles (MMPs), containing Ag NPs and ZnO NPs, were developed for use in pulmonary delivery of antituberculous drugs to the endosomal system of M.tb-infected macrophages. Efficient uptake of MMPs by M.tb-infected THP1 cells was demonstrated using an in vitro macrophage infection model, with direct interaction between MMPs and M.tb visualized with the use of electron FIB-SEM tomography. The release of Ag NPs and ZnO NPs within the macrophage endosomal system increased the potency of the model antibiotic rifampicin by as much as 76%, realized through an increase in membrane disorder of intracellular M.tb. MMPs were effective at independently driving membrane destruction of extracellular bacilli located at the exterior face of THP1 macrophages. This MMP system presents as an effective drug delivery vehicle that could be used for the transport of antituberculous drugs such as rifampicin to infected alveolar macrophages, while increasing drug potency. By increasing M.tb membrane permeability, such a system may prove effectual in improving treatment of drug-susceptible TB in addition to M.tb strains considered drug-resistant.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.7b08264</identifier><identifier>PMID: 29767993</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Antitubercular Agents - chemistry ; Antitubercular Agents - pharmacology ; Cell Line ; Cell Membrane - drug effects ; Cell Survival - drug effects ; Dose-Response Relationship, Drug ; Humans ; Macrophages - drug effects ; Microbial Sensitivity Tests ; Mycobacterium tuberculosis - cytology ; Mycobacterium tuberculosis - drug effects ; Nanoparticles - chemistry ; Rifampin - chemistry ; Rifampin - pharmacology ; Silver - chemistry ; Structure-Activity Relationship ; Zinc Oxide - chemical synthesis ; Zinc Oxide - chemistry</subject><ispartof>ACS nano, 2018-06, Vol.12 (6), p.5228-5240</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a440t-71e2109e67ae71e793df7be20c2f4d185037d1387dcdb71a1b9c11ebdba69fc33</citedby><cites>FETCH-LOGICAL-a440t-71e2109e67ae71e793df7be20c2f4d185037d1387dcdb71a1b9c11ebdba69fc33</cites><orcidid>0000-0002-0630-9290</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.7b08264$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.7b08264$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29767993$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ellis, Timothy</creatorcontrib><creatorcontrib>Chiappi, Michele</creatorcontrib><creatorcontrib>García-Trenco, Andrés</creatorcontrib><creatorcontrib>Al-Ejji, Maryam</creatorcontrib><creatorcontrib>Sarkar, Srijata</creatorcontrib><creatorcontrib>Georgiou, Theoni K</creatorcontrib><creatorcontrib>Shaffer, Milo S. P</creatorcontrib><creatorcontrib>Tetley, Teresa D</creatorcontrib><creatorcontrib>Schwander, Stephan</creatorcontrib><creatorcontrib>Ryan, Mary P</creatorcontrib><creatorcontrib>Porter, Alexandra E</creatorcontrib><title>Multimetallic Microparticles Increase the Potency of Rifampicin against Intracellular Mycobacterium tuberculosis</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Mycobacterium tuberculosis (M.tb) has the extraordinary ability to adapt to the administration of antibiotics through the development of resistance mechanisms. By rapidly exporting drugs from within the cytosol, these pathogenic bacteria diminish antibiotic potency and drive the presentation of drug-tolerant tuberculosis (TB). The membrane integrity of M.tb is pivotal in retaining these drug-resistant traits. Silver (Ag) and zinc oxide (ZnO) nanoparticles (NPs) are established antimicrobial agents that effectively compromise membrane stability, giving rise to increased bacterial permeability to antibiotics. In this work, biodegradable multimetallic microparticles (MMPs), containing Ag NPs and ZnO NPs, were developed for use in pulmonary delivery of antituberculous drugs to the endosomal system of M.tb-infected macrophages. Efficient uptake of MMPs by M.tb-infected THP1 cells was demonstrated using an in vitro macrophage infection model, with direct interaction between MMPs and M.tb visualized with the use of electron FIB-SEM tomography. The release of Ag NPs and ZnO NPs within the macrophage endosomal system increased the potency of the model antibiotic rifampicin by as much as 76%, realized through an increase in membrane disorder of intracellular M.tb. MMPs were effective at independently driving membrane destruction of extracellular bacilli located at the exterior face of THP1 macrophages. This MMP system presents as an effective drug delivery vehicle that could be used for the transport of antituberculous drugs such as rifampicin to infected alveolar macrophages, while increasing drug potency. By increasing M.tb membrane permeability, such a system may prove effectual in improving treatment of drug-susceptible TB in addition to M.tb strains considered drug-resistant.</description><subject>Antitubercular Agents - chemistry</subject><subject>Antitubercular Agents - pharmacology</subject><subject>Cell Line</subject><subject>Cell Membrane - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>Dose-Response Relationship, Drug</subject><subject>Humans</subject><subject>Macrophages - drug effects</subject><subject>Microbial Sensitivity Tests</subject><subject>Mycobacterium tuberculosis - cytology</subject><subject>Mycobacterium tuberculosis - drug effects</subject><subject>Nanoparticles - chemistry</subject><subject>Rifampin - chemistry</subject><subject>Rifampin - pharmacology</subject><subject>Silver - chemistry</subject><subject>Structure-Activity Relationship</subject><subject>Zinc Oxide - chemical synthesis</subject><subject>Zinc Oxide - chemistry</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kDtPwzAUhS0EolCY2ZB3lNZO0jgeUcWjUisQAoktunauwZXzkO0M_fcEtXRjumf4zpHuR8gNZzPOUj4HHVpou5lQrEyL_IRccJkVCSuLz9NjXvAJuQxhy9hClKI4J5NUikJImV2QfjO4aBuM4JzVdGO173rw0WqHga5a7REC0viN9LWL2Ood7Qx9swaa3mrbUvgC24Y4otGDRucGB55udrpToCN6OzQ0Dgq9HlwXbLgiZwZcwOvDnZKPx4f35XOyfnlaLe_XCeQ5i4ngmHImsRCAYxYyq41QmDKdmrzm5YJlouZZKWpdK8GBK6k5R1UrKKTRWTYl8_3u-FAIHk3Ve9uA31WcVb_uqoO76uBubNzuG_2gGqyP_J-sEbjbA2Oz2naDb8cH_p37AZ8cfos</recordid><startdate>20180626</startdate><enddate>20180626</enddate><creator>Ellis, Timothy</creator><creator>Chiappi, Michele</creator><creator>García-Trenco, Andrés</creator><creator>Al-Ejji, Maryam</creator><creator>Sarkar, Srijata</creator><creator>Georgiou, Theoni K</creator><creator>Shaffer, Milo S. P</creator><creator>Tetley, Teresa D</creator><creator>Schwander, Stephan</creator><creator>Ryan, Mary P</creator><creator>Porter, Alexandra E</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0630-9290</orcidid></search><sort><creationdate>20180626</creationdate><title>Multimetallic Microparticles Increase the Potency of Rifampicin against Intracellular Mycobacterium tuberculosis</title><author>Ellis, Timothy ; Chiappi, Michele ; García-Trenco, Andrés ; Al-Ejji, Maryam ; Sarkar, Srijata ; Georgiou, Theoni K ; Shaffer, Milo S. P ; Tetley, Teresa D ; Schwander, Stephan ; Ryan, Mary P ; Porter, Alexandra E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a440t-71e2109e67ae71e793df7be20c2f4d185037d1387dcdb71a1b9c11ebdba69fc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Antitubercular Agents - chemistry</topic><topic>Antitubercular Agents - pharmacology</topic><topic>Cell Line</topic><topic>Cell Membrane - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>Dose-Response Relationship, Drug</topic><topic>Humans</topic><topic>Macrophages - drug effects</topic><topic>Microbial Sensitivity Tests</topic><topic>Mycobacterium tuberculosis - cytology</topic><topic>Mycobacterium tuberculosis - drug effects</topic><topic>Nanoparticles - chemistry</topic><topic>Rifampin - chemistry</topic><topic>Rifampin - pharmacology</topic><topic>Silver - chemistry</topic><topic>Structure-Activity Relationship</topic><topic>Zinc Oxide - chemical synthesis</topic><topic>Zinc Oxide - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ellis, Timothy</creatorcontrib><creatorcontrib>Chiappi, Michele</creatorcontrib><creatorcontrib>García-Trenco, Andrés</creatorcontrib><creatorcontrib>Al-Ejji, Maryam</creatorcontrib><creatorcontrib>Sarkar, Srijata</creatorcontrib><creatorcontrib>Georgiou, Theoni K</creatorcontrib><creatorcontrib>Shaffer, Milo S. P</creatorcontrib><creatorcontrib>Tetley, Teresa D</creatorcontrib><creatorcontrib>Schwander, Stephan</creatorcontrib><creatorcontrib>Ryan, Mary P</creatorcontrib><creatorcontrib>Porter, Alexandra E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ellis, Timothy</au><au>Chiappi, Michele</au><au>García-Trenco, Andrés</au><au>Al-Ejji, Maryam</au><au>Sarkar, Srijata</au><au>Georgiou, Theoni K</au><au>Shaffer, Milo S. P</au><au>Tetley, Teresa D</au><au>Schwander, Stephan</au><au>Ryan, Mary P</au><au>Porter, Alexandra E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multimetallic Microparticles Increase the Potency of Rifampicin against Intracellular Mycobacterium tuberculosis</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2018-06-26</date><risdate>2018</risdate><volume>12</volume><issue>6</issue><spage>5228</spage><epage>5240</epage><pages>5228-5240</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Mycobacterium tuberculosis (M.tb) has the extraordinary ability to adapt to the administration of antibiotics through the development of resistance mechanisms. By rapidly exporting drugs from within the cytosol, these pathogenic bacteria diminish antibiotic potency and drive the presentation of drug-tolerant tuberculosis (TB). The membrane integrity of M.tb is pivotal in retaining these drug-resistant traits. Silver (Ag) and zinc oxide (ZnO) nanoparticles (NPs) are established antimicrobial agents that effectively compromise membrane stability, giving rise to increased bacterial permeability to antibiotics. In this work, biodegradable multimetallic microparticles (MMPs), containing Ag NPs and ZnO NPs, were developed for use in pulmonary delivery of antituberculous drugs to the endosomal system of M.tb-infected macrophages. Efficient uptake of MMPs by M.tb-infected THP1 cells was demonstrated using an in vitro macrophage infection model, with direct interaction between MMPs and M.tb visualized with the use of electron FIB-SEM tomography. The release of Ag NPs and ZnO NPs within the macrophage endosomal system increased the potency of the model antibiotic rifampicin by as much as 76%, realized through an increase in membrane disorder of intracellular M.tb. MMPs were effective at independently driving membrane destruction of extracellular bacilli located at the exterior face of THP1 macrophages. This MMP system presents as an effective drug delivery vehicle that could be used for the transport of antituberculous drugs such as rifampicin to infected alveolar macrophages, while increasing drug potency. By increasing M.tb membrane permeability, such a system may prove effectual in improving treatment of drug-susceptible TB in addition to M.tb strains considered drug-resistant.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29767993</pmid><doi>10.1021/acsnano.7b08264</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0630-9290</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2018-06, Vol.12 (6), p.5228-5240
issn 1936-0851
1936-086X
language eng
recordid cdi_crossref_primary_10_1021_acsnano_7b08264
source ACS Publications; MEDLINE
subjects Antitubercular Agents - chemistry
Antitubercular Agents - pharmacology
Cell Line
Cell Membrane - drug effects
Cell Survival - drug effects
Dose-Response Relationship, Drug
Humans
Macrophages - drug effects
Microbial Sensitivity Tests
Mycobacterium tuberculosis - cytology
Mycobacterium tuberculosis - drug effects
Nanoparticles - chemistry
Rifampin - chemistry
Rifampin - pharmacology
Silver - chemistry
Structure-Activity Relationship
Zinc Oxide - chemical synthesis
Zinc Oxide - chemistry
title Multimetallic Microparticles Increase the Potency of Rifampicin against Intracellular Mycobacterium tuberculosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A51%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multimetallic%20Microparticles%20Increase%20the%20Potency%20of%20Rifampicin%20against%20Intracellular%20Mycobacterium%20tuberculosis&rft.jtitle=ACS%20nano&rft.au=Ellis,%20Timothy&rft.date=2018-06-26&rft.volume=12&rft.issue=6&rft.spage=5228&rft.epage=5240&rft.pages=5228-5240&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.7b08264&rft_dat=%3Cacs_cross%3Eh84350454%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/29767993&rfr_iscdi=true