Superior Plasmonic Photodetectors Based on Au@MoS 2 Core-Shell Heterostructures

Integrating plasmonic materials into semiconductor media provides a promising approach for applications such as photosensing and solar energy conversion. The resulting structures introduce enhanced light-matter interactions, additional charge trap states, and efficient charge-transfer pathways for l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2017-10, Vol.11 (10), p.10321-10329
Hauptverfasser: Li, Yuan, DiStefano, Jennifer G, Murthy, Akshay A, Cain, Jeffrey D, Hanson, Eve D, Li, Qianqian, Castro, Fernando C, Chen, Xinqi, Dravid, Vinayak P
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10329
container_issue 10
container_start_page 10321
container_title ACS nano
container_volume 11
creator Li, Yuan
DiStefano, Jennifer G
Murthy, Akshay A
Cain, Jeffrey D
Hanson, Eve D
Li, Qianqian
Castro, Fernando C
Chen, Xinqi
Dravid, Vinayak P
description Integrating plasmonic materials into semiconductor media provides a promising approach for applications such as photosensing and solar energy conversion. The resulting structures introduce enhanced light-matter interactions, additional charge trap states, and efficient charge-transfer pathways for light-harvesting devices, especially when an intimate interface is built between the plasmonic nanostructure and semiconductor. Herein, we report the development of plasmonic photodetectors using Au@MoS heterostructures-an Au nanoparticle core that is encapsulated by a CVD-grown multilayer MoS shell, which perfectly realizes the intimate and direct interfacing of Au and MoS . We explored their favorable applications in different types of photosensing devices. The first involves the development of a large-area interdigitated field-effect phototransistor, which shows a photoresponsivity ∼10 times higher than that of planar MoS transistors. The other type of device geometry is a Si-supported Au@MoS heterojunction gateless photodiode. We demonstrated its superior photoresponse and recovery ability, with a photoresponsivity as high as 22.3 A/W, which is beyond the most distinguished values of previously reported similar gateless photodetectors. The improvement of photosensing performance can be a combined result of multiple factors, including enhanced light absorption, creation of more trap states, and, possibly, the formation of interfacial charge-transfer transition, benefiting from the intimate connection of Au and MoS .
doi_str_mv 10.1021/acsnano.7b05071
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsnano_7b05071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28933819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1099-dc2300022ab2add20cf57dc5da414864760aedf6db6dcb175c6210b0b37345583</originalsourceid><addsrcrecordid>eNo9kMtKw0AYhQdRbK2u3cm8QNp_ZjKX7KxBrVBpoQruwtxCK2kmzCQL395Ka1fnLM4FPoTuCUwJUDLTNrW6DVNpgIMkF2hMCiYyUOLr8uw5GaGblL4BuFRSXKMRVQVjihRjtNoMnY-7EPG60Wkf2p3F623og_O9t32ICT_p5B0OLZ4Pj-9hgykuQ_TZZuubBi8OsRhSHwfbD9GnW3RV6yb5u5NO0OfL80e5yJar17dyvswsgaLInKUMACjVhmrnKNiaS2e50znJlcilAO1dLZwRzhoiuRWUgAHDJMs5V2yCZsdde3hP0ddVF3d7HX8qAtUfmuqEpjqhOTQejo1uMHvvzvl_FuwXsb1hgA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Superior Plasmonic Photodetectors Based on Au@MoS 2 Core-Shell Heterostructures</title><source>ACS Publications</source><creator>Li, Yuan ; DiStefano, Jennifer G ; Murthy, Akshay A ; Cain, Jeffrey D ; Hanson, Eve D ; Li, Qianqian ; Castro, Fernando C ; Chen, Xinqi ; Dravid, Vinayak P</creator><creatorcontrib>Li, Yuan ; DiStefano, Jennifer G ; Murthy, Akshay A ; Cain, Jeffrey D ; Hanson, Eve D ; Li, Qianqian ; Castro, Fernando C ; Chen, Xinqi ; Dravid, Vinayak P</creatorcontrib><description>Integrating plasmonic materials into semiconductor media provides a promising approach for applications such as photosensing and solar energy conversion. The resulting structures introduce enhanced light-matter interactions, additional charge trap states, and efficient charge-transfer pathways for light-harvesting devices, especially when an intimate interface is built between the plasmonic nanostructure and semiconductor. Herein, we report the development of plasmonic photodetectors using Au@MoS heterostructures-an Au nanoparticle core that is encapsulated by a CVD-grown multilayer MoS shell, which perfectly realizes the intimate and direct interfacing of Au and MoS . We explored their favorable applications in different types of photosensing devices. The first involves the development of a large-area interdigitated field-effect phototransistor, which shows a photoresponsivity ∼10 times higher than that of planar MoS transistors. The other type of device geometry is a Si-supported Au@MoS heterojunction gateless photodiode. We demonstrated its superior photoresponse and recovery ability, with a photoresponsivity as high as 22.3 A/W, which is beyond the most distinguished values of previously reported similar gateless photodetectors. The improvement of photosensing performance can be a combined result of multiple factors, including enhanced light absorption, creation of more trap states, and, possibly, the formation of interfacial charge-transfer transition, benefiting from the intimate connection of Au and MoS .</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.7b05071</identifier><identifier>PMID: 28933819</identifier><language>eng</language><publisher>United States</publisher><ispartof>ACS nano, 2017-10, Vol.11 (10), p.10321-10329</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1099-dc2300022ab2add20cf57dc5da414864760aedf6db6dcb175c6210b0b37345583</citedby><cites>FETCH-LOGICAL-c1099-dc2300022ab2add20cf57dc5da414864760aedf6db6dcb175c6210b0b37345583</cites><orcidid>0000-0001-7452-1149 ; 0000-0002-6007-3063</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2752,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28933819$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yuan</creatorcontrib><creatorcontrib>DiStefano, Jennifer G</creatorcontrib><creatorcontrib>Murthy, Akshay A</creatorcontrib><creatorcontrib>Cain, Jeffrey D</creatorcontrib><creatorcontrib>Hanson, Eve D</creatorcontrib><creatorcontrib>Li, Qianqian</creatorcontrib><creatorcontrib>Castro, Fernando C</creatorcontrib><creatorcontrib>Chen, Xinqi</creatorcontrib><creatorcontrib>Dravid, Vinayak P</creatorcontrib><title>Superior Plasmonic Photodetectors Based on Au@MoS 2 Core-Shell Heterostructures</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Integrating plasmonic materials into semiconductor media provides a promising approach for applications such as photosensing and solar energy conversion. The resulting structures introduce enhanced light-matter interactions, additional charge trap states, and efficient charge-transfer pathways for light-harvesting devices, especially when an intimate interface is built between the plasmonic nanostructure and semiconductor. Herein, we report the development of plasmonic photodetectors using Au@MoS heterostructures-an Au nanoparticle core that is encapsulated by a CVD-grown multilayer MoS shell, which perfectly realizes the intimate and direct interfacing of Au and MoS . We explored their favorable applications in different types of photosensing devices. The first involves the development of a large-area interdigitated field-effect phototransistor, which shows a photoresponsivity ∼10 times higher than that of planar MoS transistors. The other type of device geometry is a Si-supported Au@MoS heterojunction gateless photodiode. We demonstrated its superior photoresponse and recovery ability, with a photoresponsivity as high as 22.3 A/W, which is beyond the most distinguished values of previously reported similar gateless photodetectors. The improvement of photosensing performance can be a combined result of multiple factors, including enhanced light absorption, creation of more trap states, and, possibly, the formation of interfacial charge-transfer transition, benefiting from the intimate connection of Au and MoS .</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kMtKw0AYhQdRbK2u3cm8QNp_ZjKX7KxBrVBpoQruwtxCK2kmzCQL395Ka1fnLM4FPoTuCUwJUDLTNrW6DVNpgIMkF2hMCiYyUOLr8uw5GaGblL4BuFRSXKMRVQVjihRjtNoMnY-7EPG60Wkf2p3F623og_O9t32ICT_p5B0OLZ4Pj-9hgykuQ_TZZuubBi8OsRhSHwfbD9GnW3RV6yb5u5NO0OfL80e5yJar17dyvswsgaLInKUMACjVhmrnKNiaS2e50znJlcilAO1dLZwRzhoiuRWUgAHDJMs5V2yCZsdde3hP0ddVF3d7HX8qAtUfmuqEpjqhOTQejo1uMHvvzvl_FuwXsb1hgA</recordid><startdate>20171024</startdate><enddate>20171024</enddate><creator>Li, Yuan</creator><creator>DiStefano, Jennifer G</creator><creator>Murthy, Akshay A</creator><creator>Cain, Jeffrey D</creator><creator>Hanson, Eve D</creator><creator>Li, Qianqian</creator><creator>Castro, Fernando C</creator><creator>Chen, Xinqi</creator><creator>Dravid, Vinayak P</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7452-1149</orcidid><orcidid>https://orcid.org/0000-0002-6007-3063</orcidid></search><sort><creationdate>20171024</creationdate><title>Superior Plasmonic Photodetectors Based on Au@MoS 2 Core-Shell Heterostructures</title><author>Li, Yuan ; DiStefano, Jennifer G ; Murthy, Akshay A ; Cain, Jeffrey D ; Hanson, Eve D ; Li, Qianqian ; Castro, Fernando C ; Chen, Xinqi ; Dravid, Vinayak P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1099-dc2300022ab2add20cf57dc5da414864760aedf6db6dcb175c6210b0b37345583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yuan</creatorcontrib><creatorcontrib>DiStefano, Jennifer G</creatorcontrib><creatorcontrib>Murthy, Akshay A</creatorcontrib><creatorcontrib>Cain, Jeffrey D</creatorcontrib><creatorcontrib>Hanson, Eve D</creatorcontrib><creatorcontrib>Li, Qianqian</creatorcontrib><creatorcontrib>Castro, Fernando C</creatorcontrib><creatorcontrib>Chen, Xinqi</creatorcontrib><creatorcontrib>Dravid, Vinayak P</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yuan</au><au>DiStefano, Jennifer G</au><au>Murthy, Akshay A</au><au>Cain, Jeffrey D</au><au>Hanson, Eve D</au><au>Li, Qianqian</au><au>Castro, Fernando C</au><au>Chen, Xinqi</au><au>Dravid, Vinayak P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superior Plasmonic Photodetectors Based on Au@MoS 2 Core-Shell Heterostructures</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2017-10-24</date><risdate>2017</risdate><volume>11</volume><issue>10</issue><spage>10321</spage><epage>10329</epage><pages>10321-10329</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Integrating plasmonic materials into semiconductor media provides a promising approach for applications such as photosensing and solar energy conversion. The resulting structures introduce enhanced light-matter interactions, additional charge trap states, and efficient charge-transfer pathways for light-harvesting devices, especially when an intimate interface is built between the plasmonic nanostructure and semiconductor. Herein, we report the development of plasmonic photodetectors using Au@MoS heterostructures-an Au nanoparticle core that is encapsulated by a CVD-grown multilayer MoS shell, which perfectly realizes the intimate and direct interfacing of Au and MoS . We explored their favorable applications in different types of photosensing devices. The first involves the development of a large-area interdigitated field-effect phototransistor, which shows a photoresponsivity ∼10 times higher than that of planar MoS transistors. The other type of device geometry is a Si-supported Au@MoS heterojunction gateless photodiode. We demonstrated its superior photoresponse and recovery ability, with a photoresponsivity as high as 22.3 A/W, which is beyond the most distinguished values of previously reported similar gateless photodetectors. The improvement of photosensing performance can be a combined result of multiple factors, including enhanced light absorption, creation of more trap states, and, possibly, the formation of interfacial charge-transfer transition, benefiting from the intimate connection of Au and MoS .</abstract><cop>United States</cop><pmid>28933819</pmid><doi>10.1021/acsnano.7b05071</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7452-1149</orcidid><orcidid>https://orcid.org/0000-0002-6007-3063</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2017-10, Vol.11 (10), p.10321-10329
issn 1936-0851
1936-086X
language eng
recordid cdi_crossref_primary_10_1021_acsnano_7b05071
source ACS Publications
title Superior Plasmonic Photodetectors Based on Au@MoS 2 Core-Shell Heterostructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A15%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superior%20Plasmonic%20Photodetectors%20Based%20on%20Au@MoS%202%20Core-Shell%20Heterostructures&rft.jtitle=ACS%20nano&rft.au=Li,%20Yuan&rft.date=2017-10-24&rft.volume=11&rft.issue=10&rft.spage=10321&rft.epage=10329&rft.pages=10321-10329&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.7b05071&rft_dat=%3Cpubmed_cross%3E28933819%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/28933819&rfr_iscdi=true