Plasmonic Heating in Au Nanowires at Low Temperatures: The Role of Thermal Boundary Resistance

Inelastic electron tunneling and surface-enhanced optical spectroscopies at the molecular scale require cryogenic local temperatures even under illuminationconditions that are challenging to achieve with plasmonically resonant metallic nanostructures. We report a detailed study of the laser heating...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2016-07, Vol.10 (7), p.6972-6979
Hauptverfasser: Zolotavin, Pavlo, Alabastri, Alessandro, Nordlander, Peter, Natelson, Douglas
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6979
container_issue 7
container_start_page 6972
container_title ACS nano
container_volume 10
creator Zolotavin, Pavlo
Alabastri, Alessandro
Nordlander, Peter
Natelson, Douglas
description Inelastic electron tunneling and surface-enhanced optical spectroscopies at the molecular scale require cryogenic local temperatures even under illuminationconditions that are challenging to achieve with plasmonically resonant metallic nanostructures. We report a detailed study of the laser heating of plasmonically active nanowires at substrate temperatures from 5 to 60 K. The increase of the local temperature of the nanowire is quantified by a bolometric approach and could be as large as 100 K for a substrate temperature of 5 K and typical values of laser intensity. We also demonstrate that a ∼3-fold reduction of the local temperature increase is possible by switching to a sapphire or quartz substrate. Finite element modeling of the heat dissipation reveals that the local temperature increase of the nanowire at temperatures below ∼50 K is determined largely by the thermal boundary resistance of the metal–substrate interface. The model reproduces the striking experimental trend that in this regime the temperature of the nanowire varies nonlinearly with the incident optical power. The thermal boundary resistance is demonstrated to be a major constraint on reaching low temperatures necessary to perform simultaneous inelastic electron tunneling and surface-enhanced Raman spectroscopies.
doi_str_mv 10.1021/acsnano.6b02911
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsnano_6b02911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b305408569</sourcerecordid><originalsourceid>FETCH-LOGICAL-a440t-dfbb77aa8182239f2e2adfcfc4d19928ed9fd4f9724a6f75a9f0ebbf689b04f83</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMotlbP3iR32TbJfiTxVotaoaiUCp5cJruJbtlNSrJL8b93S2tvnuYxvPeY-SF0TcmYEkYnUAQL1o0zRZik9AQNqYyziIjs4_SoUzpAFyGsCUm54Nk5GjAepymLxRB9vtUQGmerAs81tJX9wpXF0w6_9LXbyuuAocULt8Ur3Wy0h7brd3d49a3x0tUaO7PTvoEa37vOluB_8FKHKrRgC32JzgzUQV8d5gi9Pz6sZvNo8fr0PJsuIkgS0kalUYpzAEEFY7E0TDMoTWGKpKRSMqFLacrESM4SyAxPQRqilTKZkIokRsQjNNn3Ft6F4LXJN75q-ltySvIdqfxAKj-Q6hM3-8SmU40uj_4_NL3hdm_ok_nadd72D_xb9wuQEXYE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Plasmonic Heating in Au Nanowires at Low Temperatures: The Role of Thermal Boundary Resistance</title><source>ACS Publications</source><creator>Zolotavin, Pavlo ; Alabastri, Alessandro ; Nordlander, Peter ; Natelson, Douglas</creator><creatorcontrib>Zolotavin, Pavlo ; Alabastri, Alessandro ; Nordlander, Peter ; Natelson, Douglas</creatorcontrib><description>Inelastic electron tunneling and surface-enhanced optical spectroscopies at the molecular scale require cryogenic local temperatures even under illuminationconditions that are challenging to achieve with plasmonically resonant metallic nanostructures. We report a detailed study of the laser heating of plasmonically active nanowires at substrate temperatures from 5 to 60 K. The increase of the local temperature of the nanowire is quantified by a bolometric approach and could be as large as 100 K for a substrate temperature of 5 K and typical values of laser intensity. We also demonstrate that a ∼3-fold reduction of the local temperature increase is possible by switching to a sapphire or quartz substrate. Finite element modeling of the heat dissipation reveals that the local temperature increase of the nanowire at temperatures below ∼50 K is determined largely by the thermal boundary resistance of the metal–substrate interface. The model reproduces the striking experimental trend that in this regime the temperature of the nanowire varies nonlinearly with the incident optical power. The thermal boundary resistance is demonstrated to be a major constraint on reaching low temperatures necessary to perform simultaneous inelastic electron tunneling and surface-enhanced Raman spectroscopies.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.6b02911</identifier><identifier>PMID: 27355238</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2016-07, Vol.10 (7), p.6972-6979</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a440t-dfbb77aa8182239f2e2adfcfc4d19928ed9fd4f9724a6f75a9f0ebbf689b04f83</citedby><cites>FETCH-LOGICAL-a440t-dfbb77aa8182239f2e2adfcfc4d19928ed9fd4f9724a6f75a9f0ebbf689b04f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.6b02911$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.6b02911$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27355238$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zolotavin, Pavlo</creatorcontrib><creatorcontrib>Alabastri, Alessandro</creatorcontrib><creatorcontrib>Nordlander, Peter</creatorcontrib><creatorcontrib>Natelson, Douglas</creatorcontrib><title>Plasmonic Heating in Au Nanowires at Low Temperatures: The Role of Thermal Boundary Resistance</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Inelastic electron tunneling and surface-enhanced optical spectroscopies at the molecular scale require cryogenic local temperatures even under illuminationconditions that are challenging to achieve with plasmonically resonant metallic nanostructures. We report a detailed study of the laser heating of plasmonically active nanowires at substrate temperatures from 5 to 60 K. The increase of the local temperature of the nanowire is quantified by a bolometric approach and could be as large as 100 K for a substrate temperature of 5 K and typical values of laser intensity. We also demonstrate that a ∼3-fold reduction of the local temperature increase is possible by switching to a sapphire or quartz substrate. Finite element modeling of the heat dissipation reveals that the local temperature increase of the nanowire at temperatures below ∼50 K is determined largely by the thermal boundary resistance of the metal–substrate interface. The model reproduces the striking experimental trend that in this regime the temperature of the nanowire varies nonlinearly with the incident optical power. The thermal boundary resistance is demonstrated to be a major constraint on reaching low temperatures necessary to perform simultaneous inelastic electron tunneling and surface-enhanced Raman spectroscopies.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEQxYMotlbP3iR32TbJfiTxVotaoaiUCp5cJruJbtlNSrJL8b93S2tvnuYxvPeY-SF0TcmYEkYnUAQL1o0zRZik9AQNqYyziIjs4_SoUzpAFyGsCUm54Nk5GjAepymLxRB9vtUQGmerAs81tJX9wpXF0w6_9LXbyuuAocULt8Ur3Wy0h7brd3d49a3x0tUaO7PTvoEa37vOluB_8FKHKrRgC32JzgzUQV8d5gi9Pz6sZvNo8fr0PJsuIkgS0kalUYpzAEEFY7E0TDMoTWGKpKRSMqFLacrESM4SyAxPQRqilTKZkIokRsQjNNn3Ft6F4LXJN75q-ltySvIdqfxAKj-Q6hM3-8SmU40uj_4_NL3hdm_ok_nadd72D_xb9wuQEXYE</recordid><startdate>20160726</startdate><enddate>20160726</enddate><creator>Zolotavin, Pavlo</creator><creator>Alabastri, Alessandro</creator><creator>Nordlander, Peter</creator><creator>Natelson, Douglas</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160726</creationdate><title>Plasmonic Heating in Au Nanowires at Low Temperatures: The Role of Thermal Boundary Resistance</title><author>Zolotavin, Pavlo ; Alabastri, Alessandro ; Nordlander, Peter ; Natelson, Douglas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a440t-dfbb77aa8182239f2e2adfcfc4d19928ed9fd4f9724a6f75a9f0ebbf689b04f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zolotavin, Pavlo</creatorcontrib><creatorcontrib>Alabastri, Alessandro</creatorcontrib><creatorcontrib>Nordlander, Peter</creatorcontrib><creatorcontrib>Natelson, Douglas</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zolotavin, Pavlo</au><au>Alabastri, Alessandro</au><au>Nordlander, Peter</au><au>Natelson, Douglas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasmonic Heating in Au Nanowires at Low Temperatures: The Role of Thermal Boundary Resistance</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2016-07-26</date><risdate>2016</risdate><volume>10</volume><issue>7</issue><spage>6972</spage><epage>6979</epage><pages>6972-6979</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Inelastic electron tunneling and surface-enhanced optical spectroscopies at the molecular scale require cryogenic local temperatures even under illuminationconditions that are challenging to achieve with plasmonically resonant metallic nanostructures. We report a detailed study of the laser heating of plasmonically active nanowires at substrate temperatures from 5 to 60 K. The increase of the local temperature of the nanowire is quantified by a bolometric approach and could be as large as 100 K for a substrate temperature of 5 K and typical values of laser intensity. We also demonstrate that a ∼3-fold reduction of the local temperature increase is possible by switching to a sapphire or quartz substrate. Finite element modeling of the heat dissipation reveals that the local temperature increase of the nanowire at temperatures below ∼50 K is determined largely by the thermal boundary resistance of the metal–substrate interface. The model reproduces the striking experimental trend that in this regime the temperature of the nanowire varies nonlinearly with the incident optical power. The thermal boundary resistance is demonstrated to be a major constraint on reaching low temperatures necessary to perform simultaneous inelastic electron tunneling and surface-enhanced Raman spectroscopies.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27355238</pmid><doi>10.1021/acsnano.6b02911</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2016-07, Vol.10 (7), p.6972-6979
issn 1936-0851
1936-086X
language eng
recordid cdi_crossref_primary_10_1021_acsnano_6b02911
source ACS Publications
title Plasmonic Heating in Au Nanowires at Low Temperatures: The Role of Thermal Boundary Resistance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A59%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasmonic%20Heating%20in%20Au%20Nanowires%20at%20Low%20Temperatures:%20The%20Role%20of%20Thermal%20Boundary%20Resistance&rft.jtitle=ACS%20nano&rft.au=Zolotavin,%20Pavlo&rft.date=2016-07-26&rft.volume=10&rft.issue=7&rft.spage=6972&rft.epage=6979&rft.pages=6972-6979&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.6b02911&rft_dat=%3Cacs_cross%3Eb305408569%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/27355238&rfr_iscdi=true