Controlled Crystal Growth of All-Inorganic CsPbI 2 Br via Sequential Vacuum Deposition for Efficient Perovskite Solar Cells

Vacuum deposition of perovskites is a promising method for scale-up fabrication and uniform film growth. However, improvements in the photovoltaic performance of perovskites are limited by the fabrication of perovskite films, which are not optimized for high device efficiency in the vacuum evaporati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2024-07, Vol.18 (27), p.17764-17773
Hauptverfasser: Lee, Min Hyeong, Kim, Dae Woo, Noh, Young Wook, Kim, Hye Seung, Han, Jongmin, Lee, Heunjeong, Choi, Kyoung Jin, Cho, Shinuk, Song, Myoung Hoon
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17773
container_issue 27
container_start_page 17764
container_title ACS nano
container_volume 18
creator Lee, Min Hyeong
Kim, Dae Woo
Noh, Young Wook
Kim, Hye Seung
Han, Jongmin
Lee, Heunjeong
Choi, Kyoung Jin
Cho, Shinuk
Song, Myoung Hoon
description Vacuum deposition of perovskites is a promising method for scale-up fabrication and uniform film growth. However, improvements in the photovoltaic performance of perovskites are limited by the fabrication of perovskite films, which are not optimized for high device efficiency in the vacuum evaporation process. Herein, we fabricate CsPbI Br perovskite with high crystallinity and larger grain size by controlling the deposition sequence between PbI and CsBr. The nucleation barrier for perovskite formation is significantly lowered by first evaporating CsBr and then PbI (CsBr-PbI ), followed by the sequential evaporation of multiple layers. The results show that the reduced Gibbs free energy of CsBr-PbI , compared with that of PbI -CsBr, accelerates perovskite formation, resulting in larger grain size and reduced defect density. Furthermore, surface-modified homojunction perovskites are fabricated to efficiently extract charge carriers and enhance the efficiency of perovskite solar cells (PeSCs) by modulating the final PbI thickness before thermal annealing. Using these strategies, the best PeSC exhibits a power conversion efficiency of 13.41% for a small area (0.135 cm ), the highest value among sequential thermal deposition inorganic PeSCs, and 11.10% for a large area PeSC (1 cm ). This study presents an effective way to understand the crystal growth of thermally deposited perovskites and improve their performance in optoelectronic devices.
doi_str_mv 10.1021/acsnano.4c03079
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsnano_4c03079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>38935840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c630-16e20a5f586dba559affdb7c8eb0eb855f5e05fdeb1c989067177a6d638d1283</originalsourceid><addsrcrecordid>eNo9kFFPwjAUhRujEUWffTP3DwzalXbdI05EEhJJMMa3petarZYV2w1D_PNiQJ7uSe75zsOH0A3BA4JTMpQqNrLxg5HCFGf5CbogOeUJFvz19JgZ6aHLGD8wZpnI-DnqUZFTJkb4Av0UvmmDd07XUIRtbKWDafDf7Tt4A2Pnklnjw5tsrIIiLqoZpHAXYGMlLPVXp5vW7ogXqbpuBfd67aNtrW_A-AATY6yyuwosdPCb-GlbDUvvZIBCOxev0JmRLurrw-2j5cPkuXhM5k_TWTGeJ4pTnBCuUyyZYYLXlWQsl8bUVaaErrCuBNt9NGam1hVRucgxz0iWSV5zKmqSCtpHw_2qCj7GoE25DnYlw7YkuPyTWB4klgeJO-J2T6y7aqXrY__fGv0FSfdxCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Controlled Crystal Growth of All-Inorganic CsPbI 2 Br via Sequential Vacuum Deposition for Efficient Perovskite Solar Cells</title><source>ACS Publications</source><creator>Lee, Min Hyeong ; Kim, Dae Woo ; Noh, Young Wook ; Kim, Hye Seung ; Han, Jongmin ; Lee, Heunjeong ; Choi, Kyoung Jin ; Cho, Shinuk ; Song, Myoung Hoon</creator><creatorcontrib>Lee, Min Hyeong ; Kim, Dae Woo ; Noh, Young Wook ; Kim, Hye Seung ; Han, Jongmin ; Lee, Heunjeong ; Choi, Kyoung Jin ; Cho, Shinuk ; Song, Myoung Hoon</creatorcontrib><description>Vacuum deposition of perovskites is a promising method for scale-up fabrication and uniform film growth. However, improvements in the photovoltaic performance of perovskites are limited by the fabrication of perovskite films, which are not optimized for high device efficiency in the vacuum evaporation process. Herein, we fabricate CsPbI Br perovskite with high crystallinity and larger grain size by controlling the deposition sequence between PbI and CsBr. The nucleation barrier for perovskite formation is significantly lowered by first evaporating CsBr and then PbI (CsBr-PbI ), followed by the sequential evaporation of multiple layers. The results show that the reduced Gibbs free energy of CsBr-PbI , compared with that of PbI -CsBr, accelerates perovskite formation, resulting in larger grain size and reduced defect density. Furthermore, surface-modified homojunction perovskites are fabricated to efficiently extract charge carriers and enhance the efficiency of perovskite solar cells (PeSCs) by modulating the final PbI thickness before thermal annealing. Using these strategies, the best PeSC exhibits a power conversion efficiency of 13.41% for a small area (0.135 cm ), the highest value among sequential thermal deposition inorganic PeSCs, and 11.10% for a large area PeSC (1 cm ). This study presents an effective way to understand the crystal growth of thermally deposited perovskites and improve their performance in optoelectronic devices.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.4c03079</identifier><identifier>PMID: 38935840</identifier><language>eng</language><publisher>United States</publisher><ispartof>ACS nano, 2024-07, Vol.18 (27), p.17764-17773</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c630-16e20a5f586dba559affdb7c8eb0eb855f5e05fdeb1c989067177a6d638d1283</cites><orcidid>0000-0003-2884-8006 ; 0000-0002-6855-833X ; 0000-0002-8106-7332</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2765,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38935840$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Min Hyeong</creatorcontrib><creatorcontrib>Kim, Dae Woo</creatorcontrib><creatorcontrib>Noh, Young Wook</creatorcontrib><creatorcontrib>Kim, Hye Seung</creatorcontrib><creatorcontrib>Han, Jongmin</creatorcontrib><creatorcontrib>Lee, Heunjeong</creatorcontrib><creatorcontrib>Choi, Kyoung Jin</creatorcontrib><creatorcontrib>Cho, Shinuk</creatorcontrib><creatorcontrib>Song, Myoung Hoon</creatorcontrib><title>Controlled Crystal Growth of All-Inorganic CsPbI 2 Br via Sequential Vacuum Deposition for Efficient Perovskite Solar Cells</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Vacuum deposition of perovskites is a promising method for scale-up fabrication and uniform film growth. However, improvements in the photovoltaic performance of perovskites are limited by the fabrication of perovskite films, which are not optimized for high device efficiency in the vacuum evaporation process. Herein, we fabricate CsPbI Br perovskite with high crystallinity and larger grain size by controlling the deposition sequence between PbI and CsBr. The nucleation barrier for perovskite formation is significantly lowered by first evaporating CsBr and then PbI (CsBr-PbI ), followed by the sequential evaporation of multiple layers. The results show that the reduced Gibbs free energy of CsBr-PbI , compared with that of PbI -CsBr, accelerates perovskite formation, resulting in larger grain size and reduced defect density. Furthermore, surface-modified homojunction perovskites are fabricated to efficiently extract charge carriers and enhance the efficiency of perovskite solar cells (PeSCs) by modulating the final PbI thickness before thermal annealing. Using these strategies, the best PeSC exhibits a power conversion efficiency of 13.41% for a small area (0.135 cm ), the highest value among sequential thermal deposition inorganic PeSCs, and 11.10% for a large area PeSC (1 cm ). This study presents an effective way to understand the crystal growth of thermally deposited perovskites and improve their performance in optoelectronic devices.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kFFPwjAUhRujEUWffTP3DwzalXbdI05EEhJJMMa3petarZYV2w1D_PNiQJ7uSe75zsOH0A3BA4JTMpQqNrLxg5HCFGf5CbogOeUJFvz19JgZ6aHLGD8wZpnI-DnqUZFTJkb4Av0UvmmDd07XUIRtbKWDafDf7Tt4A2Pnklnjw5tsrIIiLqoZpHAXYGMlLPVXp5vW7ogXqbpuBfd67aNtrW_A-AATY6yyuwosdPCb-GlbDUvvZIBCOxev0JmRLurrw-2j5cPkuXhM5k_TWTGeJ4pTnBCuUyyZYYLXlWQsl8bUVaaErrCuBNt9NGam1hVRucgxz0iWSV5zKmqSCtpHw_2qCj7GoE25DnYlw7YkuPyTWB4klgeJO-J2T6y7aqXrY__fGv0FSfdxCw</recordid><startdate>20240709</startdate><enddate>20240709</enddate><creator>Lee, Min Hyeong</creator><creator>Kim, Dae Woo</creator><creator>Noh, Young Wook</creator><creator>Kim, Hye Seung</creator><creator>Han, Jongmin</creator><creator>Lee, Heunjeong</creator><creator>Choi, Kyoung Jin</creator><creator>Cho, Shinuk</creator><creator>Song, Myoung Hoon</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2884-8006</orcidid><orcidid>https://orcid.org/0000-0002-6855-833X</orcidid><orcidid>https://orcid.org/0000-0002-8106-7332</orcidid></search><sort><creationdate>20240709</creationdate><title>Controlled Crystal Growth of All-Inorganic CsPbI 2 Br via Sequential Vacuum Deposition for Efficient Perovskite Solar Cells</title><author>Lee, Min Hyeong ; Kim, Dae Woo ; Noh, Young Wook ; Kim, Hye Seung ; Han, Jongmin ; Lee, Heunjeong ; Choi, Kyoung Jin ; Cho, Shinuk ; Song, Myoung Hoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c630-16e20a5f586dba559affdb7c8eb0eb855f5e05fdeb1c989067177a6d638d1283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Min Hyeong</creatorcontrib><creatorcontrib>Kim, Dae Woo</creatorcontrib><creatorcontrib>Noh, Young Wook</creatorcontrib><creatorcontrib>Kim, Hye Seung</creatorcontrib><creatorcontrib>Han, Jongmin</creatorcontrib><creatorcontrib>Lee, Heunjeong</creatorcontrib><creatorcontrib>Choi, Kyoung Jin</creatorcontrib><creatorcontrib>Cho, Shinuk</creatorcontrib><creatorcontrib>Song, Myoung Hoon</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Min Hyeong</au><au>Kim, Dae Woo</au><au>Noh, Young Wook</au><au>Kim, Hye Seung</au><au>Han, Jongmin</au><au>Lee, Heunjeong</au><au>Choi, Kyoung Jin</au><au>Cho, Shinuk</au><au>Song, Myoung Hoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlled Crystal Growth of All-Inorganic CsPbI 2 Br via Sequential Vacuum Deposition for Efficient Perovskite Solar Cells</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2024-07-09</date><risdate>2024</risdate><volume>18</volume><issue>27</issue><spage>17764</spage><epage>17773</epage><pages>17764-17773</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Vacuum deposition of perovskites is a promising method for scale-up fabrication and uniform film growth. However, improvements in the photovoltaic performance of perovskites are limited by the fabrication of perovskite films, which are not optimized for high device efficiency in the vacuum evaporation process. Herein, we fabricate CsPbI Br perovskite with high crystallinity and larger grain size by controlling the deposition sequence between PbI and CsBr. The nucleation barrier for perovskite formation is significantly lowered by first evaporating CsBr and then PbI (CsBr-PbI ), followed by the sequential evaporation of multiple layers. The results show that the reduced Gibbs free energy of CsBr-PbI , compared with that of PbI -CsBr, accelerates perovskite formation, resulting in larger grain size and reduced defect density. Furthermore, surface-modified homojunction perovskites are fabricated to efficiently extract charge carriers and enhance the efficiency of perovskite solar cells (PeSCs) by modulating the final PbI thickness before thermal annealing. Using these strategies, the best PeSC exhibits a power conversion efficiency of 13.41% for a small area (0.135 cm ), the highest value among sequential thermal deposition inorganic PeSCs, and 11.10% for a large area PeSC (1 cm ). This study presents an effective way to understand the crystal growth of thermally deposited perovskites and improve their performance in optoelectronic devices.</abstract><cop>United States</cop><pmid>38935840</pmid><doi>10.1021/acsnano.4c03079</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2884-8006</orcidid><orcidid>https://orcid.org/0000-0002-6855-833X</orcidid><orcidid>https://orcid.org/0000-0002-8106-7332</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2024-07, Vol.18 (27), p.17764-17773
issn 1936-0851
1936-086X
language eng
recordid cdi_crossref_primary_10_1021_acsnano_4c03079
source ACS Publications
title Controlled Crystal Growth of All-Inorganic CsPbI 2 Br via Sequential Vacuum Deposition for Efficient Perovskite Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A41%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlled%20Crystal%20Growth%20of%20All-Inorganic%20CsPbI%202%20Br%20via%20Sequential%20Vacuum%20Deposition%20for%20Efficient%20Perovskite%20Solar%20Cells&rft.jtitle=ACS%20nano&rft.au=Lee,%20Min%20Hyeong&rft.date=2024-07-09&rft.volume=18&rft.issue=27&rft.spage=17764&rft.epage=17773&rft.pages=17764-17773&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.4c03079&rft_dat=%3Cpubmed_cross%3E38935840%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/38935840&rfr_iscdi=true