Programmable Retention Characteristics in MoS 2 -Based Atomristors for Neuromorphic and Reservoir Computing Systems

In this study, we investigate the coexistence of short- and long-term memory effects owing to the programmable retention characteristics of a two-dimensional Au/MoS /Au atomristor device and determine the impact of these effects on synaptic properties. This device is constructed using bilayer MoS in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2024-06, Vol.18 (22), p.14327
Hauptverfasser: Lee, Yoonseok, Huang, Yifu, Chang, Yao-Feng, Yang, Sung Jin, Ignacio, Nicholas D, Kutagulla, Shanmukh, Mohan, Sivasakthya, Kim, Sunghun, Lee, Jungwoo, Akinwande, Deji, Kim, Sungjun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 22
container_start_page 14327
container_title ACS nano
container_volume 18
creator Lee, Yoonseok
Huang, Yifu
Chang, Yao-Feng
Yang, Sung Jin
Ignacio, Nicholas D
Kutagulla, Shanmukh
Mohan, Sivasakthya
Kim, Sunghun
Lee, Jungwoo
Akinwande, Deji
Kim, Sungjun
description In this study, we investigate the coexistence of short- and long-term memory effects owing to the programmable retention characteristics of a two-dimensional Au/MoS /Au atomristor device and determine the impact of these effects on synaptic properties. This device is constructed using bilayer MoS in a crossbar structure. The presence of both short- and long-term memory characteristics is proposed by using a filament model within the bilayer transition-metal dichalcogenide. Short- and long-term properties are validated based on programmable multilevel retention tests. Moreover, we confirm various synaptic characteristics of the device, demonstrating its potential use as a synaptic device in a neuromorphic system. Excitatory postsynaptic current, paired-pulse facilitation, spike-rate-dependent plasticity, and spike-number-dependent plasticity synaptic applications are implemented by operating the device at a low-conductance level. Furthermore, long-term potentiation and depression exhibit symmetrical properties at high-conductance levels. Synaptic learning and forgetting characteristics are emulated using programmable retention properties and composite synaptic plasticity. The learning process of artificial neural networks is used to achieve high pattern recognition accuracy, thereby demonstrating the suitability of the use of the device in a neuromorphic system. Finally, the device is used as a physical reservoir with time-dependent inputs to realize reservoir computing by using short-term memory properties. Our study reveals that the proposed device can be applied in artificial intelligence-based computing applications by utilizing its programmable retention properties.
doi_str_mv 10.1021/acsnano.4c00333
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsnano_4c00333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>38767980</sourcerecordid><originalsourceid>FETCH-LOGICAL-c630-1de7deb389cdbeea1b3a58020d4494648160d8ebf81a4b7c73a507e1fa0461063</originalsourceid><addsrcrecordid>eNo9kM1PwjAYxhujEUTP3kz_gcFbOrruiItfCX5EOHhbuvYd1NB1aYcJ_70joKfnSZ6Pw4-QWwZjBlM2UTo2qvHjVANwzs_IkOVcJCDF1_m_n7EBuYrxG2CWyUxckgHvJcslDEn8CH4dlHOq2iL9xA6bzvqGFhsVlO4w2NhZHalt6Ktf0ilN7lVEQ-edd4fMh0hrH-gb7oJ3PrQbq6lqTH8VMfx4G2jhXbvrbLOmy33s0MVrclGrbcSbk47I6vFhVTwni_enl2K-SLTgkDCDmcGKy1ybClGxiquZhCmYNM1TkUomwEisaslUWmU662PIkNUKUsFA8BGZHG918DEGrMs2WKfCvmRQHuiVJ3rliV6_uDsu2l3l0Pz3_3DxX8fabzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Programmable Retention Characteristics in MoS 2 -Based Atomristors for Neuromorphic and Reservoir Computing Systems</title><source>ACS Publications</source><creator>Lee, Yoonseok ; Huang, Yifu ; Chang, Yao-Feng ; Yang, Sung Jin ; Ignacio, Nicholas D ; Kutagulla, Shanmukh ; Mohan, Sivasakthya ; Kim, Sunghun ; Lee, Jungwoo ; Akinwande, Deji ; Kim, Sungjun</creator><creatorcontrib>Lee, Yoonseok ; Huang, Yifu ; Chang, Yao-Feng ; Yang, Sung Jin ; Ignacio, Nicholas D ; Kutagulla, Shanmukh ; Mohan, Sivasakthya ; Kim, Sunghun ; Lee, Jungwoo ; Akinwande, Deji ; Kim, Sungjun</creatorcontrib><description>In this study, we investigate the coexistence of short- and long-term memory effects owing to the programmable retention characteristics of a two-dimensional Au/MoS /Au atomristor device and determine the impact of these effects on synaptic properties. This device is constructed using bilayer MoS in a crossbar structure. The presence of both short- and long-term memory characteristics is proposed by using a filament model within the bilayer transition-metal dichalcogenide. Short- and long-term properties are validated based on programmable multilevel retention tests. Moreover, we confirm various synaptic characteristics of the device, demonstrating its potential use as a synaptic device in a neuromorphic system. Excitatory postsynaptic current, paired-pulse facilitation, spike-rate-dependent plasticity, and spike-number-dependent plasticity synaptic applications are implemented by operating the device at a low-conductance level. Furthermore, long-term potentiation and depression exhibit symmetrical properties at high-conductance levels. Synaptic learning and forgetting characteristics are emulated using programmable retention properties and composite synaptic plasticity. The learning process of artificial neural networks is used to achieve high pattern recognition accuracy, thereby demonstrating the suitability of the use of the device in a neuromorphic system. Finally, the device is used as a physical reservoir with time-dependent inputs to realize reservoir computing by using short-term memory properties. Our study reveals that the proposed device can be applied in artificial intelligence-based computing applications by utilizing its programmable retention properties.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.4c00333</identifier><identifier>PMID: 38767980</identifier><language>eng</language><publisher>United States</publisher><ispartof>ACS nano, 2024-06, Vol.18 (22), p.14327</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c630-1de7deb389cdbeea1b3a58020d4494648160d8ebf81a4b7c73a507e1fa0461063</cites><orcidid>0000-0002-4529-6226 ; 0000-0001-7133-5586 ; 0000-0001-8663-3033 ; 0000-0002-0914-6378 ; 0000-0002-8943-9305 ; 0000-0002-9873-2474 ; 0000-0002-4078-8053</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2765,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38767980$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Yoonseok</creatorcontrib><creatorcontrib>Huang, Yifu</creatorcontrib><creatorcontrib>Chang, Yao-Feng</creatorcontrib><creatorcontrib>Yang, Sung Jin</creatorcontrib><creatorcontrib>Ignacio, Nicholas D</creatorcontrib><creatorcontrib>Kutagulla, Shanmukh</creatorcontrib><creatorcontrib>Mohan, Sivasakthya</creatorcontrib><creatorcontrib>Kim, Sunghun</creatorcontrib><creatorcontrib>Lee, Jungwoo</creatorcontrib><creatorcontrib>Akinwande, Deji</creatorcontrib><creatorcontrib>Kim, Sungjun</creatorcontrib><title>Programmable Retention Characteristics in MoS 2 -Based Atomristors for Neuromorphic and Reservoir Computing Systems</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>In this study, we investigate the coexistence of short- and long-term memory effects owing to the programmable retention characteristics of a two-dimensional Au/MoS /Au atomristor device and determine the impact of these effects on synaptic properties. This device is constructed using bilayer MoS in a crossbar structure. The presence of both short- and long-term memory characteristics is proposed by using a filament model within the bilayer transition-metal dichalcogenide. Short- and long-term properties are validated based on programmable multilevel retention tests. Moreover, we confirm various synaptic characteristics of the device, demonstrating its potential use as a synaptic device in a neuromorphic system. Excitatory postsynaptic current, paired-pulse facilitation, spike-rate-dependent plasticity, and spike-number-dependent plasticity synaptic applications are implemented by operating the device at a low-conductance level. Furthermore, long-term potentiation and depression exhibit symmetrical properties at high-conductance levels. Synaptic learning and forgetting characteristics are emulated using programmable retention properties and composite synaptic plasticity. The learning process of artificial neural networks is used to achieve high pattern recognition accuracy, thereby demonstrating the suitability of the use of the device in a neuromorphic system. Finally, the device is used as a physical reservoir with time-dependent inputs to realize reservoir computing by using short-term memory properties. Our study reveals that the proposed device can be applied in artificial intelligence-based computing applications by utilizing its programmable retention properties.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kM1PwjAYxhujEUTP3kz_gcFbOrruiItfCX5EOHhbuvYd1NB1aYcJ_70joKfnSZ6Pw4-QWwZjBlM2UTo2qvHjVANwzs_IkOVcJCDF1_m_n7EBuYrxG2CWyUxckgHvJcslDEn8CH4dlHOq2iL9xA6bzvqGFhsVlO4w2NhZHalt6Ktf0ilN7lVEQ-edd4fMh0hrH-gb7oJ3PrQbq6lqTH8VMfx4G2jhXbvrbLOmy33s0MVrclGrbcSbk47I6vFhVTwni_enl2K-SLTgkDCDmcGKy1ybClGxiquZhCmYNM1TkUomwEisaslUWmU662PIkNUKUsFA8BGZHG918DEGrMs2WKfCvmRQHuiVJ3rliV6_uDsu2l3l0Pz3_3DxX8fabzw</recordid><startdate>20240604</startdate><enddate>20240604</enddate><creator>Lee, Yoonseok</creator><creator>Huang, Yifu</creator><creator>Chang, Yao-Feng</creator><creator>Yang, Sung Jin</creator><creator>Ignacio, Nicholas D</creator><creator>Kutagulla, Shanmukh</creator><creator>Mohan, Sivasakthya</creator><creator>Kim, Sunghun</creator><creator>Lee, Jungwoo</creator><creator>Akinwande, Deji</creator><creator>Kim, Sungjun</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4529-6226</orcidid><orcidid>https://orcid.org/0000-0001-7133-5586</orcidid><orcidid>https://orcid.org/0000-0001-8663-3033</orcidid><orcidid>https://orcid.org/0000-0002-0914-6378</orcidid><orcidid>https://orcid.org/0000-0002-8943-9305</orcidid><orcidid>https://orcid.org/0000-0002-9873-2474</orcidid><orcidid>https://orcid.org/0000-0002-4078-8053</orcidid></search><sort><creationdate>20240604</creationdate><title>Programmable Retention Characteristics in MoS 2 -Based Atomristors for Neuromorphic and Reservoir Computing Systems</title><author>Lee, Yoonseok ; Huang, Yifu ; Chang, Yao-Feng ; Yang, Sung Jin ; Ignacio, Nicholas D ; Kutagulla, Shanmukh ; Mohan, Sivasakthya ; Kim, Sunghun ; Lee, Jungwoo ; Akinwande, Deji ; Kim, Sungjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c630-1de7deb389cdbeea1b3a58020d4494648160d8ebf81a4b7c73a507e1fa0461063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Yoonseok</creatorcontrib><creatorcontrib>Huang, Yifu</creatorcontrib><creatorcontrib>Chang, Yao-Feng</creatorcontrib><creatorcontrib>Yang, Sung Jin</creatorcontrib><creatorcontrib>Ignacio, Nicholas D</creatorcontrib><creatorcontrib>Kutagulla, Shanmukh</creatorcontrib><creatorcontrib>Mohan, Sivasakthya</creatorcontrib><creatorcontrib>Kim, Sunghun</creatorcontrib><creatorcontrib>Lee, Jungwoo</creatorcontrib><creatorcontrib>Akinwande, Deji</creatorcontrib><creatorcontrib>Kim, Sungjun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Yoonseok</au><au>Huang, Yifu</au><au>Chang, Yao-Feng</au><au>Yang, Sung Jin</au><au>Ignacio, Nicholas D</au><au>Kutagulla, Shanmukh</au><au>Mohan, Sivasakthya</au><au>Kim, Sunghun</au><au>Lee, Jungwoo</au><au>Akinwande, Deji</au><au>Kim, Sungjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Programmable Retention Characteristics in MoS 2 -Based Atomristors for Neuromorphic and Reservoir Computing Systems</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2024-06-04</date><risdate>2024</risdate><volume>18</volume><issue>22</issue><spage>14327</spage><pages>14327-</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>In this study, we investigate the coexistence of short- and long-term memory effects owing to the programmable retention characteristics of a two-dimensional Au/MoS /Au atomristor device and determine the impact of these effects on synaptic properties. This device is constructed using bilayer MoS in a crossbar structure. The presence of both short- and long-term memory characteristics is proposed by using a filament model within the bilayer transition-metal dichalcogenide. Short- and long-term properties are validated based on programmable multilevel retention tests. Moreover, we confirm various synaptic characteristics of the device, demonstrating its potential use as a synaptic device in a neuromorphic system. Excitatory postsynaptic current, paired-pulse facilitation, spike-rate-dependent plasticity, and spike-number-dependent plasticity synaptic applications are implemented by operating the device at a low-conductance level. Furthermore, long-term potentiation and depression exhibit symmetrical properties at high-conductance levels. Synaptic learning and forgetting characteristics are emulated using programmable retention properties and composite synaptic plasticity. The learning process of artificial neural networks is used to achieve high pattern recognition accuracy, thereby demonstrating the suitability of the use of the device in a neuromorphic system. Finally, the device is used as a physical reservoir with time-dependent inputs to realize reservoir computing by using short-term memory properties. Our study reveals that the proposed device can be applied in artificial intelligence-based computing applications by utilizing its programmable retention properties.</abstract><cop>United States</cop><pmid>38767980</pmid><doi>10.1021/acsnano.4c00333</doi><orcidid>https://orcid.org/0000-0002-4529-6226</orcidid><orcidid>https://orcid.org/0000-0001-7133-5586</orcidid><orcidid>https://orcid.org/0000-0001-8663-3033</orcidid><orcidid>https://orcid.org/0000-0002-0914-6378</orcidid><orcidid>https://orcid.org/0000-0002-8943-9305</orcidid><orcidid>https://orcid.org/0000-0002-9873-2474</orcidid><orcidid>https://orcid.org/0000-0002-4078-8053</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2024-06, Vol.18 (22), p.14327
issn 1936-0851
1936-086X
language eng
recordid cdi_crossref_primary_10_1021_acsnano_4c00333
source ACS Publications
title Programmable Retention Characteristics in MoS 2 -Based Atomristors for Neuromorphic and Reservoir Computing Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A30%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Programmable%20Retention%20Characteristics%20in%20MoS%202%20-Based%20Atomristors%20for%20Neuromorphic%20and%20Reservoir%20Computing%20Systems&rft.jtitle=ACS%20nano&rft.au=Lee,%20Yoonseok&rft.date=2024-06-04&rft.volume=18&rft.issue=22&rft.spage=14327&rft.pages=14327-&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.4c00333&rft_dat=%3Cpubmed_cross%3E38767980%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/38767980&rfr_iscdi=true