Low Temperature Nano Mechano-electrocatalytic CH 4 Conversion

Transforming natural resources to energy sources, such as converting CH to H and carbon, at high efficiency and low cost is crucial for many industries and environmental sustainability. The high temperature requirement of CH conversion regarding many of the current methods remains a critical bottlen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2022-06, Vol.16 (6), p.8684-8693
Hauptverfasser: Tang, Junma, Kumar, Priyank V, Scott, Jason A, Tang, Jianbo, Ghasemian, Mohammad B, Mousavi, Maedehsadat, Han, Jialuo, Esrafilzadeh, Dorna, Khoshmanesh, Khashayar, Daeneke, Torben, O'Mullane, Anthony P, Kaner, Richard B, Rahim, Md Arifur, Kalantar-Zadeh, Kourosh
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8693
container_issue 6
container_start_page 8684
container_title ACS nano
container_volume 16
creator Tang, Junma
Kumar, Priyank V
Scott, Jason A
Tang, Jianbo
Ghasemian, Mohammad B
Mousavi, Maedehsadat
Han, Jialuo
Esrafilzadeh, Dorna
Khoshmanesh, Khashayar
Daeneke, Torben
O'Mullane, Anthony P
Kaner, Richard B
Rahim, Md Arifur
Kalantar-Zadeh, Kourosh
description Transforming natural resources to energy sources, such as converting CH to H and carbon, at high efficiency and low cost is crucial for many industries and environmental sustainability. The high temperature requirement of CH conversion regarding many of the current methods remains a critical bottleneck for their practical uptake. Here we report an approach based on gallium (Ga) liquid metal droplets, Ni(OH) cocatalysts, and mechanical energy input that offers low-temperature and scalable CH conversion into H and carbon. Mainly driven by the triboelectric voltage, originating from the joint contributions of the cocatalysts during agitation, CH is converted at the Ga and Ni(OH) interface through nanotribo-electrochemical reaction pathways. The efficiency of the system is enhanced when the reaction is performed at an increased pressure. The dehydrogenation of other nongaseous hydrocarbons using this approach is also demonstrated. This technology presents a possible low energy route for CH conversion without involving high temperature and harsh operating conditions.
doi_str_mv 10.1021/acsnano.2c02326
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsnano_2c02326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35470662</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1092-ccd0cbd377ae65da00f573c3526b3c1d9b7d9e78072720912674c4d6e16a30733</originalsourceid><addsrcrecordid>eNo9kD9PwzAUxC0EoqUws6F8gbTPdmInAwOKKEUKsBSJLXKeX0RQ_lR2Cuq3J6ih091wd9L9GLvlsOQg-Mqg70zXLwWCkEKdsTlPpQohUR_nJx_zGbvy_gsg1olWl2wm40iDUmLO7vP-J9hSuyNnhr2j4HWcC14IP0cNqSEcXI9mMM1hqDHINkEUZH33Tc7XfXfNLirTeLqZdMHe14_bbBPmb0_P2UMeIodUhIgWsLRSa0MqtgagirVEGQtVSuQ2LbVNSSeghRaQcqF0hJFVxJWRoKVcsNVxF13vvaOq2Lm6Ne5QcCj-QBQTiGICMTbujo3dvmzJnvL_z-Uvm89aIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Low Temperature Nano Mechano-electrocatalytic CH 4 Conversion</title><source>ACS Publications</source><creator>Tang, Junma ; Kumar, Priyank V ; Scott, Jason A ; Tang, Jianbo ; Ghasemian, Mohammad B ; Mousavi, Maedehsadat ; Han, Jialuo ; Esrafilzadeh, Dorna ; Khoshmanesh, Khashayar ; Daeneke, Torben ; O'Mullane, Anthony P ; Kaner, Richard B ; Rahim, Md Arifur ; Kalantar-Zadeh, Kourosh</creator><creatorcontrib>Tang, Junma ; Kumar, Priyank V ; Scott, Jason A ; Tang, Jianbo ; Ghasemian, Mohammad B ; Mousavi, Maedehsadat ; Han, Jialuo ; Esrafilzadeh, Dorna ; Khoshmanesh, Khashayar ; Daeneke, Torben ; O'Mullane, Anthony P ; Kaner, Richard B ; Rahim, Md Arifur ; Kalantar-Zadeh, Kourosh</creatorcontrib><description>Transforming natural resources to energy sources, such as converting CH to H and carbon, at high efficiency and low cost is crucial for many industries and environmental sustainability. The high temperature requirement of CH conversion regarding many of the current methods remains a critical bottleneck for their practical uptake. Here we report an approach based on gallium (Ga) liquid metal droplets, Ni(OH) cocatalysts, and mechanical energy input that offers low-temperature and scalable CH conversion into H and carbon. Mainly driven by the triboelectric voltage, originating from the joint contributions of the cocatalysts during agitation, CH is converted at the Ga and Ni(OH) interface through nanotribo-electrochemical reaction pathways. The efficiency of the system is enhanced when the reaction is performed at an increased pressure. The dehydrogenation of other nongaseous hydrocarbons using this approach is also demonstrated. This technology presents a possible low energy route for CH conversion without involving high temperature and harsh operating conditions.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.2c02326</identifier><identifier>PMID: 35470662</identifier><language>eng</language><publisher>United States</publisher><ispartof>ACS nano, 2022-06, Vol.16 (6), p.8684-8693</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1092-ccd0cbd377ae65da00f573c3526b3c1d9b7d9e78072720912674c4d6e16a30733</citedby><cites>FETCH-LOGICAL-c1092-ccd0cbd377ae65da00f573c3526b3c1d9b7d9e78072720912674c4d6e16a30733</cites><orcidid>0000-0003-0345-4924 ; 0000-0003-2395-2058 ; 0000-0002-0155-6807 ; 0000-0002-5618-0106 ; 0000-0001-6109-132X ; 0000-0002-9959-8238 ; 0000-0002-2539-294X ; 0000-0001-9294-5180 ; 0000-0003-3403-9133 ; 0000-0002-8203-7223 ; 0000-0003-1142-8646 ; 0000-0002-7994-2097 ; 0000-0001-6036-7371 ; 0000-0003-4422-8077</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2765,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35470662$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Junma</creatorcontrib><creatorcontrib>Kumar, Priyank V</creatorcontrib><creatorcontrib>Scott, Jason A</creatorcontrib><creatorcontrib>Tang, Jianbo</creatorcontrib><creatorcontrib>Ghasemian, Mohammad B</creatorcontrib><creatorcontrib>Mousavi, Maedehsadat</creatorcontrib><creatorcontrib>Han, Jialuo</creatorcontrib><creatorcontrib>Esrafilzadeh, Dorna</creatorcontrib><creatorcontrib>Khoshmanesh, Khashayar</creatorcontrib><creatorcontrib>Daeneke, Torben</creatorcontrib><creatorcontrib>O'Mullane, Anthony P</creatorcontrib><creatorcontrib>Kaner, Richard B</creatorcontrib><creatorcontrib>Rahim, Md Arifur</creatorcontrib><creatorcontrib>Kalantar-Zadeh, Kourosh</creatorcontrib><title>Low Temperature Nano Mechano-electrocatalytic CH 4 Conversion</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Transforming natural resources to energy sources, such as converting CH to H and carbon, at high efficiency and low cost is crucial for many industries and environmental sustainability. The high temperature requirement of CH conversion regarding many of the current methods remains a critical bottleneck for their practical uptake. Here we report an approach based on gallium (Ga) liquid metal droplets, Ni(OH) cocatalysts, and mechanical energy input that offers low-temperature and scalable CH conversion into H and carbon. Mainly driven by the triboelectric voltage, originating from the joint contributions of the cocatalysts during agitation, CH is converted at the Ga and Ni(OH) interface through nanotribo-electrochemical reaction pathways. The efficiency of the system is enhanced when the reaction is performed at an increased pressure. The dehydrogenation of other nongaseous hydrocarbons using this approach is also demonstrated. This technology presents a possible low energy route for CH conversion without involving high temperature and harsh operating conditions.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kD9PwzAUxC0EoqUws6F8gbTPdmInAwOKKEUKsBSJLXKeX0RQ_lR2Cuq3J6ih091wd9L9GLvlsOQg-Mqg70zXLwWCkEKdsTlPpQohUR_nJx_zGbvy_gsg1olWl2wm40iDUmLO7vP-J9hSuyNnhr2j4HWcC14IP0cNqSEcXI9mMM1hqDHINkEUZH33Tc7XfXfNLirTeLqZdMHe14_bbBPmb0_P2UMeIodUhIgWsLRSa0MqtgagirVEGQtVSuQ2LbVNSSeghRaQcqF0hJFVxJWRoKVcsNVxF13vvaOq2Lm6Ne5QcCj-QBQTiGICMTbujo3dvmzJnvL_z-Uvm89aIQ</recordid><startdate>20220628</startdate><enddate>20220628</enddate><creator>Tang, Junma</creator><creator>Kumar, Priyank V</creator><creator>Scott, Jason A</creator><creator>Tang, Jianbo</creator><creator>Ghasemian, Mohammad B</creator><creator>Mousavi, Maedehsadat</creator><creator>Han, Jialuo</creator><creator>Esrafilzadeh, Dorna</creator><creator>Khoshmanesh, Khashayar</creator><creator>Daeneke, Torben</creator><creator>O'Mullane, Anthony P</creator><creator>Kaner, Richard B</creator><creator>Rahim, Md Arifur</creator><creator>Kalantar-Zadeh, Kourosh</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0345-4924</orcidid><orcidid>https://orcid.org/0000-0003-2395-2058</orcidid><orcidid>https://orcid.org/0000-0002-0155-6807</orcidid><orcidid>https://orcid.org/0000-0002-5618-0106</orcidid><orcidid>https://orcid.org/0000-0001-6109-132X</orcidid><orcidid>https://orcid.org/0000-0002-9959-8238</orcidid><orcidid>https://orcid.org/0000-0002-2539-294X</orcidid><orcidid>https://orcid.org/0000-0001-9294-5180</orcidid><orcidid>https://orcid.org/0000-0003-3403-9133</orcidid><orcidid>https://orcid.org/0000-0002-8203-7223</orcidid><orcidid>https://orcid.org/0000-0003-1142-8646</orcidid><orcidid>https://orcid.org/0000-0002-7994-2097</orcidid><orcidid>https://orcid.org/0000-0001-6036-7371</orcidid><orcidid>https://orcid.org/0000-0003-4422-8077</orcidid></search><sort><creationdate>20220628</creationdate><title>Low Temperature Nano Mechano-electrocatalytic CH 4 Conversion</title><author>Tang, Junma ; Kumar, Priyank V ; Scott, Jason A ; Tang, Jianbo ; Ghasemian, Mohammad B ; Mousavi, Maedehsadat ; Han, Jialuo ; Esrafilzadeh, Dorna ; Khoshmanesh, Khashayar ; Daeneke, Torben ; O'Mullane, Anthony P ; Kaner, Richard B ; Rahim, Md Arifur ; Kalantar-Zadeh, Kourosh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1092-ccd0cbd377ae65da00f573c3526b3c1d9b7d9e78072720912674c4d6e16a30733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Junma</creatorcontrib><creatorcontrib>Kumar, Priyank V</creatorcontrib><creatorcontrib>Scott, Jason A</creatorcontrib><creatorcontrib>Tang, Jianbo</creatorcontrib><creatorcontrib>Ghasemian, Mohammad B</creatorcontrib><creatorcontrib>Mousavi, Maedehsadat</creatorcontrib><creatorcontrib>Han, Jialuo</creatorcontrib><creatorcontrib>Esrafilzadeh, Dorna</creatorcontrib><creatorcontrib>Khoshmanesh, Khashayar</creatorcontrib><creatorcontrib>Daeneke, Torben</creatorcontrib><creatorcontrib>O'Mullane, Anthony P</creatorcontrib><creatorcontrib>Kaner, Richard B</creatorcontrib><creatorcontrib>Rahim, Md Arifur</creatorcontrib><creatorcontrib>Kalantar-Zadeh, Kourosh</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Junma</au><au>Kumar, Priyank V</au><au>Scott, Jason A</au><au>Tang, Jianbo</au><au>Ghasemian, Mohammad B</au><au>Mousavi, Maedehsadat</au><au>Han, Jialuo</au><au>Esrafilzadeh, Dorna</au><au>Khoshmanesh, Khashayar</au><au>Daeneke, Torben</au><au>O'Mullane, Anthony P</au><au>Kaner, Richard B</au><au>Rahim, Md Arifur</au><au>Kalantar-Zadeh, Kourosh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low Temperature Nano Mechano-electrocatalytic CH 4 Conversion</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2022-06-28</date><risdate>2022</risdate><volume>16</volume><issue>6</issue><spage>8684</spage><epage>8693</epage><pages>8684-8693</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Transforming natural resources to energy sources, such as converting CH to H and carbon, at high efficiency and low cost is crucial for many industries and environmental sustainability. The high temperature requirement of CH conversion regarding many of the current methods remains a critical bottleneck for their practical uptake. Here we report an approach based on gallium (Ga) liquid metal droplets, Ni(OH) cocatalysts, and mechanical energy input that offers low-temperature and scalable CH conversion into H and carbon. Mainly driven by the triboelectric voltage, originating from the joint contributions of the cocatalysts during agitation, CH is converted at the Ga and Ni(OH) interface through nanotribo-electrochemical reaction pathways. The efficiency of the system is enhanced when the reaction is performed at an increased pressure. The dehydrogenation of other nongaseous hydrocarbons using this approach is also demonstrated. This technology presents a possible low energy route for CH conversion without involving high temperature and harsh operating conditions.</abstract><cop>United States</cop><pmid>35470662</pmid><doi>10.1021/acsnano.2c02326</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0345-4924</orcidid><orcidid>https://orcid.org/0000-0003-2395-2058</orcidid><orcidid>https://orcid.org/0000-0002-0155-6807</orcidid><orcidid>https://orcid.org/0000-0002-5618-0106</orcidid><orcidid>https://orcid.org/0000-0001-6109-132X</orcidid><orcidid>https://orcid.org/0000-0002-9959-8238</orcidid><orcidid>https://orcid.org/0000-0002-2539-294X</orcidid><orcidid>https://orcid.org/0000-0001-9294-5180</orcidid><orcidid>https://orcid.org/0000-0003-3403-9133</orcidid><orcidid>https://orcid.org/0000-0002-8203-7223</orcidid><orcidid>https://orcid.org/0000-0003-1142-8646</orcidid><orcidid>https://orcid.org/0000-0002-7994-2097</orcidid><orcidid>https://orcid.org/0000-0001-6036-7371</orcidid><orcidid>https://orcid.org/0000-0003-4422-8077</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2022-06, Vol.16 (6), p.8684-8693
issn 1936-0851
1936-086X
language eng
recordid cdi_crossref_primary_10_1021_acsnano_2c02326
source ACS Publications
title Low Temperature Nano Mechano-electrocatalytic CH 4 Conversion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A08%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20Temperature%20Nano%20Mechano-electrocatalytic%20CH%204%20Conversion&rft.jtitle=ACS%20nano&rft.au=Tang,%20Junma&rft.date=2022-06-28&rft.volume=16&rft.issue=6&rft.spage=8684&rft.epage=8693&rft.pages=8684-8693&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.2c02326&rft_dat=%3Cpubmed_cross%3E35470662%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/35470662&rfr_iscdi=true