Low Temperature Nano Mechano-electrocatalytic CH 4 Conversion
Transforming natural resources to energy sources, such as converting CH to H and carbon, at high efficiency and low cost is crucial for many industries and environmental sustainability. The high temperature requirement of CH conversion regarding many of the current methods remains a critical bottlen...
Gespeichert in:
Veröffentlicht in: | ACS nano 2022-06, Vol.16 (6), p.8684-8693 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8693 |
---|---|
container_issue | 6 |
container_start_page | 8684 |
container_title | ACS nano |
container_volume | 16 |
creator | Tang, Junma Kumar, Priyank V Scott, Jason A Tang, Jianbo Ghasemian, Mohammad B Mousavi, Maedehsadat Han, Jialuo Esrafilzadeh, Dorna Khoshmanesh, Khashayar Daeneke, Torben O'Mullane, Anthony P Kaner, Richard B Rahim, Md Arifur Kalantar-Zadeh, Kourosh |
description | Transforming natural resources to energy sources, such as converting CH
to H
and carbon, at high efficiency and low cost is crucial for many industries and environmental sustainability. The high temperature requirement of CH
conversion regarding many of the current methods remains a critical bottleneck for their practical uptake. Here we report an approach based on gallium (Ga) liquid metal droplets, Ni(OH)
cocatalysts, and mechanical energy input that offers low-temperature and scalable CH
conversion into H
and carbon. Mainly driven by the triboelectric voltage, originating from the joint contributions of the cocatalysts during agitation, CH
is converted at the Ga and Ni(OH)
interface through nanotribo-electrochemical reaction pathways. The efficiency of the system is enhanced when the reaction is performed at an increased pressure. The dehydrogenation of other nongaseous hydrocarbons using this approach is also demonstrated. This technology presents a possible low energy route for CH
conversion without involving high temperature and harsh operating conditions. |
doi_str_mv | 10.1021/acsnano.2c02326 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsnano_2c02326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35470662</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1092-ccd0cbd377ae65da00f573c3526b3c1d9b7d9e78072720912674c4d6e16a30733</originalsourceid><addsrcrecordid>eNo9kD9PwzAUxC0EoqUws6F8gbTPdmInAwOKKEUKsBSJLXKeX0RQ_lR2Cuq3J6ih091wd9L9GLvlsOQg-Mqg70zXLwWCkEKdsTlPpQohUR_nJx_zGbvy_gsg1olWl2wm40iDUmLO7vP-J9hSuyNnhr2j4HWcC14IP0cNqSEcXI9mMM1hqDHINkEUZH33Tc7XfXfNLirTeLqZdMHe14_bbBPmb0_P2UMeIodUhIgWsLRSa0MqtgagirVEGQtVSuQ2LbVNSSeghRaQcqF0hJFVxJWRoKVcsNVxF13vvaOq2Lm6Ne5QcCj-QBQTiGICMTbujo3dvmzJnvL_z-Uvm89aIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Low Temperature Nano Mechano-electrocatalytic CH 4 Conversion</title><source>ACS Publications</source><creator>Tang, Junma ; Kumar, Priyank V ; Scott, Jason A ; Tang, Jianbo ; Ghasemian, Mohammad B ; Mousavi, Maedehsadat ; Han, Jialuo ; Esrafilzadeh, Dorna ; Khoshmanesh, Khashayar ; Daeneke, Torben ; O'Mullane, Anthony P ; Kaner, Richard B ; Rahim, Md Arifur ; Kalantar-Zadeh, Kourosh</creator><creatorcontrib>Tang, Junma ; Kumar, Priyank V ; Scott, Jason A ; Tang, Jianbo ; Ghasemian, Mohammad B ; Mousavi, Maedehsadat ; Han, Jialuo ; Esrafilzadeh, Dorna ; Khoshmanesh, Khashayar ; Daeneke, Torben ; O'Mullane, Anthony P ; Kaner, Richard B ; Rahim, Md Arifur ; Kalantar-Zadeh, Kourosh</creatorcontrib><description>Transforming natural resources to energy sources, such as converting CH
to H
and carbon, at high efficiency and low cost is crucial for many industries and environmental sustainability. The high temperature requirement of CH
conversion regarding many of the current methods remains a critical bottleneck for their practical uptake. Here we report an approach based on gallium (Ga) liquid metal droplets, Ni(OH)
cocatalysts, and mechanical energy input that offers low-temperature and scalable CH
conversion into H
and carbon. Mainly driven by the triboelectric voltage, originating from the joint contributions of the cocatalysts during agitation, CH
is converted at the Ga and Ni(OH)
interface through nanotribo-electrochemical reaction pathways. The efficiency of the system is enhanced when the reaction is performed at an increased pressure. The dehydrogenation of other nongaseous hydrocarbons using this approach is also demonstrated. This technology presents a possible low energy route for CH
conversion without involving high temperature and harsh operating conditions.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.2c02326</identifier><identifier>PMID: 35470662</identifier><language>eng</language><publisher>United States</publisher><ispartof>ACS nano, 2022-06, Vol.16 (6), p.8684-8693</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1092-ccd0cbd377ae65da00f573c3526b3c1d9b7d9e78072720912674c4d6e16a30733</citedby><cites>FETCH-LOGICAL-c1092-ccd0cbd377ae65da00f573c3526b3c1d9b7d9e78072720912674c4d6e16a30733</cites><orcidid>0000-0003-0345-4924 ; 0000-0003-2395-2058 ; 0000-0002-0155-6807 ; 0000-0002-5618-0106 ; 0000-0001-6109-132X ; 0000-0002-9959-8238 ; 0000-0002-2539-294X ; 0000-0001-9294-5180 ; 0000-0003-3403-9133 ; 0000-0002-8203-7223 ; 0000-0003-1142-8646 ; 0000-0002-7994-2097 ; 0000-0001-6036-7371 ; 0000-0003-4422-8077</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2765,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35470662$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Junma</creatorcontrib><creatorcontrib>Kumar, Priyank V</creatorcontrib><creatorcontrib>Scott, Jason A</creatorcontrib><creatorcontrib>Tang, Jianbo</creatorcontrib><creatorcontrib>Ghasemian, Mohammad B</creatorcontrib><creatorcontrib>Mousavi, Maedehsadat</creatorcontrib><creatorcontrib>Han, Jialuo</creatorcontrib><creatorcontrib>Esrafilzadeh, Dorna</creatorcontrib><creatorcontrib>Khoshmanesh, Khashayar</creatorcontrib><creatorcontrib>Daeneke, Torben</creatorcontrib><creatorcontrib>O'Mullane, Anthony P</creatorcontrib><creatorcontrib>Kaner, Richard B</creatorcontrib><creatorcontrib>Rahim, Md Arifur</creatorcontrib><creatorcontrib>Kalantar-Zadeh, Kourosh</creatorcontrib><title>Low Temperature Nano Mechano-electrocatalytic CH 4 Conversion</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Transforming natural resources to energy sources, such as converting CH
to H
and carbon, at high efficiency and low cost is crucial for many industries and environmental sustainability. The high temperature requirement of CH
conversion regarding many of the current methods remains a critical bottleneck for their practical uptake. Here we report an approach based on gallium (Ga) liquid metal droplets, Ni(OH)
cocatalysts, and mechanical energy input that offers low-temperature and scalable CH
conversion into H
and carbon. Mainly driven by the triboelectric voltage, originating from the joint contributions of the cocatalysts during agitation, CH
is converted at the Ga and Ni(OH)
interface through nanotribo-electrochemical reaction pathways. The efficiency of the system is enhanced when the reaction is performed at an increased pressure. The dehydrogenation of other nongaseous hydrocarbons using this approach is also demonstrated. This technology presents a possible low energy route for CH
conversion without involving high temperature and harsh operating conditions.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kD9PwzAUxC0EoqUws6F8gbTPdmInAwOKKEUKsBSJLXKeX0RQ_lR2Cuq3J6ih091wd9L9GLvlsOQg-Mqg70zXLwWCkEKdsTlPpQohUR_nJx_zGbvy_gsg1olWl2wm40iDUmLO7vP-J9hSuyNnhr2j4HWcC14IP0cNqSEcXI9mMM1hqDHINkEUZH33Tc7XfXfNLirTeLqZdMHe14_bbBPmb0_P2UMeIodUhIgWsLRSa0MqtgagirVEGQtVSuQ2LbVNSSeghRaQcqF0hJFVxJWRoKVcsNVxF13vvaOq2Lm6Ne5QcCj-QBQTiGICMTbujo3dvmzJnvL_z-Uvm89aIQ</recordid><startdate>20220628</startdate><enddate>20220628</enddate><creator>Tang, Junma</creator><creator>Kumar, Priyank V</creator><creator>Scott, Jason A</creator><creator>Tang, Jianbo</creator><creator>Ghasemian, Mohammad B</creator><creator>Mousavi, Maedehsadat</creator><creator>Han, Jialuo</creator><creator>Esrafilzadeh, Dorna</creator><creator>Khoshmanesh, Khashayar</creator><creator>Daeneke, Torben</creator><creator>O'Mullane, Anthony P</creator><creator>Kaner, Richard B</creator><creator>Rahim, Md Arifur</creator><creator>Kalantar-Zadeh, Kourosh</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0345-4924</orcidid><orcidid>https://orcid.org/0000-0003-2395-2058</orcidid><orcidid>https://orcid.org/0000-0002-0155-6807</orcidid><orcidid>https://orcid.org/0000-0002-5618-0106</orcidid><orcidid>https://orcid.org/0000-0001-6109-132X</orcidid><orcidid>https://orcid.org/0000-0002-9959-8238</orcidid><orcidid>https://orcid.org/0000-0002-2539-294X</orcidid><orcidid>https://orcid.org/0000-0001-9294-5180</orcidid><orcidid>https://orcid.org/0000-0003-3403-9133</orcidid><orcidid>https://orcid.org/0000-0002-8203-7223</orcidid><orcidid>https://orcid.org/0000-0003-1142-8646</orcidid><orcidid>https://orcid.org/0000-0002-7994-2097</orcidid><orcidid>https://orcid.org/0000-0001-6036-7371</orcidid><orcidid>https://orcid.org/0000-0003-4422-8077</orcidid></search><sort><creationdate>20220628</creationdate><title>Low Temperature Nano Mechano-electrocatalytic CH 4 Conversion</title><author>Tang, Junma ; Kumar, Priyank V ; Scott, Jason A ; Tang, Jianbo ; Ghasemian, Mohammad B ; Mousavi, Maedehsadat ; Han, Jialuo ; Esrafilzadeh, Dorna ; Khoshmanesh, Khashayar ; Daeneke, Torben ; O'Mullane, Anthony P ; Kaner, Richard B ; Rahim, Md Arifur ; Kalantar-Zadeh, Kourosh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1092-ccd0cbd377ae65da00f573c3526b3c1d9b7d9e78072720912674c4d6e16a30733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Junma</creatorcontrib><creatorcontrib>Kumar, Priyank V</creatorcontrib><creatorcontrib>Scott, Jason A</creatorcontrib><creatorcontrib>Tang, Jianbo</creatorcontrib><creatorcontrib>Ghasemian, Mohammad B</creatorcontrib><creatorcontrib>Mousavi, Maedehsadat</creatorcontrib><creatorcontrib>Han, Jialuo</creatorcontrib><creatorcontrib>Esrafilzadeh, Dorna</creatorcontrib><creatorcontrib>Khoshmanesh, Khashayar</creatorcontrib><creatorcontrib>Daeneke, Torben</creatorcontrib><creatorcontrib>O'Mullane, Anthony P</creatorcontrib><creatorcontrib>Kaner, Richard B</creatorcontrib><creatorcontrib>Rahim, Md Arifur</creatorcontrib><creatorcontrib>Kalantar-Zadeh, Kourosh</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Junma</au><au>Kumar, Priyank V</au><au>Scott, Jason A</au><au>Tang, Jianbo</au><au>Ghasemian, Mohammad B</au><au>Mousavi, Maedehsadat</au><au>Han, Jialuo</au><au>Esrafilzadeh, Dorna</au><au>Khoshmanesh, Khashayar</au><au>Daeneke, Torben</au><au>O'Mullane, Anthony P</au><au>Kaner, Richard B</au><au>Rahim, Md Arifur</au><au>Kalantar-Zadeh, Kourosh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low Temperature Nano Mechano-electrocatalytic CH 4 Conversion</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2022-06-28</date><risdate>2022</risdate><volume>16</volume><issue>6</issue><spage>8684</spage><epage>8693</epage><pages>8684-8693</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Transforming natural resources to energy sources, such as converting CH
to H
and carbon, at high efficiency and low cost is crucial for many industries and environmental sustainability. The high temperature requirement of CH
conversion regarding many of the current methods remains a critical bottleneck for their practical uptake. Here we report an approach based on gallium (Ga) liquid metal droplets, Ni(OH)
cocatalysts, and mechanical energy input that offers low-temperature and scalable CH
conversion into H
and carbon. Mainly driven by the triboelectric voltage, originating from the joint contributions of the cocatalysts during agitation, CH
is converted at the Ga and Ni(OH)
interface through nanotribo-electrochemical reaction pathways. The efficiency of the system is enhanced when the reaction is performed at an increased pressure. The dehydrogenation of other nongaseous hydrocarbons using this approach is also demonstrated. This technology presents a possible low energy route for CH
conversion without involving high temperature and harsh operating conditions.</abstract><cop>United States</cop><pmid>35470662</pmid><doi>10.1021/acsnano.2c02326</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0345-4924</orcidid><orcidid>https://orcid.org/0000-0003-2395-2058</orcidid><orcidid>https://orcid.org/0000-0002-0155-6807</orcidid><orcidid>https://orcid.org/0000-0002-5618-0106</orcidid><orcidid>https://orcid.org/0000-0001-6109-132X</orcidid><orcidid>https://orcid.org/0000-0002-9959-8238</orcidid><orcidid>https://orcid.org/0000-0002-2539-294X</orcidid><orcidid>https://orcid.org/0000-0001-9294-5180</orcidid><orcidid>https://orcid.org/0000-0003-3403-9133</orcidid><orcidid>https://orcid.org/0000-0002-8203-7223</orcidid><orcidid>https://orcid.org/0000-0003-1142-8646</orcidid><orcidid>https://orcid.org/0000-0002-7994-2097</orcidid><orcidid>https://orcid.org/0000-0001-6036-7371</orcidid><orcidid>https://orcid.org/0000-0003-4422-8077</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2022-06, Vol.16 (6), p.8684-8693 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_crossref_primary_10_1021_acsnano_2c02326 |
source | ACS Publications |
title | Low Temperature Nano Mechano-electrocatalytic CH 4 Conversion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A08%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20Temperature%20Nano%20Mechano-electrocatalytic%20CH%204%20Conversion&rft.jtitle=ACS%20nano&rft.au=Tang,%20Junma&rft.date=2022-06-28&rft.volume=16&rft.issue=6&rft.spage=8684&rft.epage=8693&rft.pages=8684-8693&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.2c02326&rft_dat=%3Cpubmed_cross%3E35470662%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/35470662&rfr_iscdi=true |