MoS 2 /WSe 2 vdW Heterostructures Decorated with PbS Quantum Dots for the Development of High-Performance Photovoltaic and Broadband Photodiodes

van der Waals heterostructures (vdWHs) overcoming the lattice and processing limitations of conventional heterostructures provide an opportunity to develop high-performance 2D vdWH solar cells and photodiodes. However, it is challenging to improve the sensitivity and response speed of 2D vdWH photov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2022-06, Vol.16 (6), p.9329-9338
Hauptverfasser: Zeng, Peiyu, Wang, Wenhui, Han, Dongshuang, Zhang, Jundong, Yu, Zhihao, He, Jiaoyan, Zheng, Peng, Zheng, Hui, Zheng, Liang, Su, Weitao, Huo, Dexuan, Ni, Zhenhua, Zhang, Yang, Wu, Zhangting
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9338
container_issue 6
container_start_page 9329
container_title ACS nano
container_volume 16
creator Zeng, Peiyu
Wang, Wenhui
Han, Dongshuang
Zhang, Jundong
Yu, Zhihao
He, Jiaoyan
Zheng, Peng
Zheng, Hui
Zheng, Liang
Su, Weitao
Huo, Dexuan
Ni, Zhenhua
Zhang, Yang
Wu, Zhangting
description van der Waals heterostructures (vdWHs) overcoming the lattice and processing limitations of conventional heterostructures provide an opportunity to develop high-performance 2D vdWH solar cells and photodiodes. However, it is challenging to improve the sensitivity and response speed of 2D vdWH photovoltaic devices due to the low light absorption efficiency and electron/hole traps in heterointerfaces. Here, we design a PbS/MoS /WSe heterostructure photodiode in which a light-sensitive PbS quantum dot (QD) layer combined with a MoS /WSe heterostructure significantly enhances the photovoltaic response. The electron current in the heterostructure is increased by the effective collection of photogenerated electrons induced by PbS QDs. The device exhibits a broadband photovoltaic response from 405 to 1064 nm with a maximum responsivity of 0.76 A/W and a specific detectivity of 5.15 × 10 Jones. In particular, the response speed is not limited by multiple electron traps in the PbS QDs/2D material heterointerface, and a fast rising/decaying time of 43/48 μs and a -3 dB cutoff frequency of over 10 kHz are achieved. The negative differential capacitance and frequency dependence of capacitance demonstrate the presence of interface states in the MoS /WSe heterointerface that hamper the improvement of the response speed. The scheme to enhance photovoltaic performance without sacrificing response speed provides opportunities for the development of high-performance 2D vdWH optoelectronic devices.
doi_str_mv 10.1021/acsnano.2c02012
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsnano_2c02012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35687375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1095-edc873adcf4a4cce10273cb40b4dd6dce5bf445a144f086ce0885363820994e73</originalsourceid><addsrcrecordid>eNo9kM1OAjEUhRujEUTX7kxfYKCdtvOzVPzBBCMGDe4mnfaOjGGmpO1gfAsf2SLI6p7knHOT8yF0ScmQkpiOpHKtbM0wViQmND5CfZqzJCJZ8n580IL20Jlzn4SINEuTU9RjIslSloo--nkycxzj0WIO4Wz0Ak_AgzXO2075zoLDt6CMlR40_qr9Es_KOX7pZOu7Bt8a73BlLPZLCLkNrMy6gdZjU-FJ_bGMZmCD3chWAZ4tjTcbs_KyVli2Gt9YI3W5VX-Wro0Gd45OKrlycLG_A_R2f_c6nkTT54fH8fU0UpTkIgKtwgKpVcUlVwoCjZSpkpOSa51oBaKsOBeScl4FGgpIlgmWsCwmec4hZQM02v1VYayzUBVrWzfSfheUFFu2xZ5tsWcbGle7xrorG9CH_D9M9gtjjnjK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>MoS 2 /WSe 2 vdW Heterostructures Decorated with PbS Quantum Dots for the Development of High-Performance Photovoltaic and Broadband Photodiodes</title><source>American Chemical Society Publications</source><creator>Zeng, Peiyu ; Wang, Wenhui ; Han, Dongshuang ; Zhang, Jundong ; Yu, Zhihao ; He, Jiaoyan ; Zheng, Peng ; Zheng, Hui ; Zheng, Liang ; Su, Weitao ; Huo, Dexuan ; Ni, Zhenhua ; Zhang, Yang ; Wu, Zhangting</creator><creatorcontrib>Zeng, Peiyu ; Wang, Wenhui ; Han, Dongshuang ; Zhang, Jundong ; Yu, Zhihao ; He, Jiaoyan ; Zheng, Peng ; Zheng, Hui ; Zheng, Liang ; Su, Weitao ; Huo, Dexuan ; Ni, Zhenhua ; Zhang, Yang ; Wu, Zhangting</creatorcontrib><description>van der Waals heterostructures (vdWHs) overcoming the lattice and processing limitations of conventional heterostructures provide an opportunity to develop high-performance 2D vdWH solar cells and photodiodes. However, it is challenging to improve the sensitivity and response speed of 2D vdWH photovoltaic devices due to the low light absorption efficiency and electron/hole traps in heterointerfaces. Here, we design a PbS/MoS /WSe heterostructure photodiode in which a light-sensitive PbS quantum dot (QD) layer combined with a MoS /WSe heterostructure significantly enhances the photovoltaic response. The electron current in the heterostructure is increased by the effective collection of photogenerated electrons induced by PbS QDs. The device exhibits a broadband photovoltaic response from 405 to 1064 nm with a maximum responsivity of 0.76 A/W and a specific detectivity of 5.15 × 10 Jones. In particular, the response speed is not limited by multiple electron traps in the PbS QDs/2D material heterointerface, and a fast rising/decaying time of 43/48 μs and a -3 dB cutoff frequency of over 10 kHz are achieved. The negative differential capacitance and frequency dependence of capacitance demonstrate the presence of interface states in the MoS /WSe heterointerface that hamper the improvement of the response speed. The scheme to enhance photovoltaic performance without sacrificing response speed provides opportunities for the development of high-performance 2D vdWH optoelectronic devices.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.2c02012</identifier><identifier>PMID: 35687375</identifier><language>eng</language><publisher>United States</publisher><ispartof>ACS nano, 2022-06, Vol.16 (6), p.9329-9338</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1095-edc873adcf4a4cce10273cb40b4dd6dce5bf445a144f086ce0885363820994e73</citedby><cites>FETCH-LOGICAL-c1095-edc873adcf4a4cce10273cb40b4dd6dce5bf445a144f086ce0885363820994e73</cites><orcidid>0000-0002-6316-2256 ; 0000-0003-4327-2308 ; 0000-0002-7831-1955 ; 0000-0002-4412-0405 ; 0000-0002-2337-0683 ; 0000-0002-5128-6606 ; 0000-0003-2027-4001</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2756,27915,27916</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35687375$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zeng, Peiyu</creatorcontrib><creatorcontrib>Wang, Wenhui</creatorcontrib><creatorcontrib>Han, Dongshuang</creatorcontrib><creatorcontrib>Zhang, Jundong</creatorcontrib><creatorcontrib>Yu, Zhihao</creatorcontrib><creatorcontrib>He, Jiaoyan</creatorcontrib><creatorcontrib>Zheng, Peng</creatorcontrib><creatorcontrib>Zheng, Hui</creatorcontrib><creatorcontrib>Zheng, Liang</creatorcontrib><creatorcontrib>Su, Weitao</creatorcontrib><creatorcontrib>Huo, Dexuan</creatorcontrib><creatorcontrib>Ni, Zhenhua</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Wu, Zhangting</creatorcontrib><title>MoS 2 /WSe 2 vdW Heterostructures Decorated with PbS Quantum Dots for the Development of High-Performance Photovoltaic and Broadband Photodiodes</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>van der Waals heterostructures (vdWHs) overcoming the lattice and processing limitations of conventional heterostructures provide an opportunity to develop high-performance 2D vdWH solar cells and photodiodes. However, it is challenging to improve the sensitivity and response speed of 2D vdWH photovoltaic devices due to the low light absorption efficiency and electron/hole traps in heterointerfaces. Here, we design a PbS/MoS /WSe heterostructure photodiode in which a light-sensitive PbS quantum dot (QD) layer combined with a MoS /WSe heterostructure significantly enhances the photovoltaic response. The electron current in the heterostructure is increased by the effective collection of photogenerated electrons induced by PbS QDs. The device exhibits a broadband photovoltaic response from 405 to 1064 nm with a maximum responsivity of 0.76 A/W and a specific detectivity of 5.15 × 10 Jones. In particular, the response speed is not limited by multiple electron traps in the PbS QDs/2D material heterointerface, and a fast rising/decaying time of 43/48 μs and a -3 dB cutoff frequency of over 10 kHz are achieved. The negative differential capacitance and frequency dependence of capacitance demonstrate the presence of interface states in the MoS /WSe heterointerface that hamper the improvement of the response speed. The scheme to enhance photovoltaic performance without sacrificing response speed provides opportunities for the development of high-performance 2D vdWH optoelectronic devices.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OAjEUhRujEUTX7kxfYKCdtvOzVPzBBCMGDe4mnfaOjGGmpO1gfAsf2SLI6p7knHOT8yF0ScmQkpiOpHKtbM0wViQmND5CfZqzJCJZ8n580IL20Jlzn4SINEuTU9RjIslSloo--nkycxzj0WIO4Wz0Ak_AgzXO2075zoLDt6CMlR40_qr9Es_KOX7pZOu7Bt8a73BlLPZLCLkNrMy6gdZjU-FJ_bGMZmCD3chWAZ4tjTcbs_KyVli2Gt9YI3W5VX-Wro0Gd45OKrlycLG_A_R2f_c6nkTT54fH8fU0UpTkIgKtwgKpVcUlVwoCjZSpkpOSa51oBaKsOBeScl4FGgpIlgmWsCwmec4hZQM02v1VYayzUBVrWzfSfheUFFu2xZ5tsWcbGle7xrorG9CH_D9M9gtjjnjK</recordid><startdate>20220628</startdate><enddate>20220628</enddate><creator>Zeng, Peiyu</creator><creator>Wang, Wenhui</creator><creator>Han, Dongshuang</creator><creator>Zhang, Jundong</creator><creator>Yu, Zhihao</creator><creator>He, Jiaoyan</creator><creator>Zheng, Peng</creator><creator>Zheng, Hui</creator><creator>Zheng, Liang</creator><creator>Su, Weitao</creator><creator>Huo, Dexuan</creator><creator>Ni, Zhenhua</creator><creator>Zhang, Yang</creator><creator>Wu, Zhangting</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6316-2256</orcidid><orcidid>https://orcid.org/0000-0003-4327-2308</orcidid><orcidid>https://orcid.org/0000-0002-7831-1955</orcidid><orcidid>https://orcid.org/0000-0002-4412-0405</orcidid><orcidid>https://orcid.org/0000-0002-2337-0683</orcidid><orcidid>https://orcid.org/0000-0002-5128-6606</orcidid><orcidid>https://orcid.org/0000-0003-2027-4001</orcidid></search><sort><creationdate>20220628</creationdate><title>MoS 2 /WSe 2 vdW Heterostructures Decorated with PbS Quantum Dots for the Development of High-Performance Photovoltaic and Broadband Photodiodes</title><author>Zeng, Peiyu ; Wang, Wenhui ; Han, Dongshuang ; Zhang, Jundong ; Yu, Zhihao ; He, Jiaoyan ; Zheng, Peng ; Zheng, Hui ; Zheng, Liang ; Su, Weitao ; Huo, Dexuan ; Ni, Zhenhua ; Zhang, Yang ; Wu, Zhangting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1095-edc873adcf4a4cce10273cb40b4dd6dce5bf445a144f086ce0885363820994e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Peiyu</creatorcontrib><creatorcontrib>Wang, Wenhui</creatorcontrib><creatorcontrib>Han, Dongshuang</creatorcontrib><creatorcontrib>Zhang, Jundong</creatorcontrib><creatorcontrib>Yu, Zhihao</creatorcontrib><creatorcontrib>He, Jiaoyan</creatorcontrib><creatorcontrib>Zheng, Peng</creatorcontrib><creatorcontrib>Zheng, Hui</creatorcontrib><creatorcontrib>Zheng, Liang</creatorcontrib><creatorcontrib>Su, Weitao</creatorcontrib><creatorcontrib>Huo, Dexuan</creatorcontrib><creatorcontrib>Ni, Zhenhua</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Wu, Zhangting</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Peiyu</au><au>Wang, Wenhui</au><au>Han, Dongshuang</au><au>Zhang, Jundong</au><au>Yu, Zhihao</au><au>He, Jiaoyan</au><au>Zheng, Peng</au><au>Zheng, Hui</au><au>Zheng, Liang</au><au>Su, Weitao</au><au>Huo, Dexuan</au><au>Ni, Zhenhua</au><au>Zhang, Yang</au><au>Wu, Zhangting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MoS 2 /WSe 2 vdW Heterostructures Decorated with PbS Quantum Dots for the Development of High-Performance Photovoltaic and Broadband Photodiodes</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2022-06-28</date><risdate>2022</risdate><volume>16</volume><issue>6</issue><spage>9329</spage><epage>9338</epage><pages>9329-9338</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>van der Waals heterostructures (vdWHs) overcoming the lattice and processing limitations of conventional heterostructures provide an opportunity to develop high-performance 2D vdWH solar cells and photodiodes. However, it is challenging to improve the sensitivity and response speed of 2D vdWH photovoltaic devices due to the low light absorption efficiency and electron/hole traps in heterointerfaces. Here, we design a PbS/MoS /WSe heterostructure photodiode in which a light-sensitive PbS quantum dot (QD) layer combined with a MoS /WSe heterostructure significantly enhances the photovoltaic response. The electron current in the heterostructure is increased by the effective collection of photogenerated electrons induced by PbS QDs. The device exhibits a broadband photovoltaic response from 405 to 1064 nm with a maximum responsivity of 0.76 A/W and a specific detectivity of 5.15 × 10 Jones. In particular, the response speed is not limited by multiple electron traps in the PbS QDs/2D material heterointerface, and a fast rising/decaying time of 43/48 μs and a -3 dB cutoff frequency of over 10 kHz are achieved. The negative differential capacitance and frequency dependence of capacitance demonstrate the presence of interface states in the MoS /WSe heterointerface that hamper the improvement of the response speed. The scheme to enhance photovoltaic performance without sacrificing response speed provides opportunities for the development of high-performance 2D vdWH optoelectronic devices.</abstract><cop>United States</cop><pmid>35687375</pmid><doi>10.1021/acsnano.2c02012</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6316-2256</orcidid><orcidid>https://orcid.org/0000-0003-4327-2308</orcidid><orcidid>https://orcid.org/0000-0002-7831-1955</orcidid><orcidid>https://orcid.org/0000-0002-4412-0405</orcidid><orcidid>https://orcid.org/0000-0002-2337-0683</orcidid><orcidid>https://orcid.org/0000-0002-5128-6606</orcidid><orcidid>https://orcid.org/0000-0003-2027-4001</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2022-06, Vol.16 (6), p.9329-9338
issn 1936-0851
1936-086X
language eng
recordid cdi_crossref_primary_10_1021_acsnano_2c02012
source American Chemical Society Publications
title MoS 2 /WSe 2 vdW Heterostructures Decorated with PbS Quantum Dots for the Development of High-Performance Photovoltaic and Broadband Photodiodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T18%3A20%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MoS%202%20/WSe%202%20vdW%20Heterostructures%20Decorated%20with%20PbS%20Quantum%20Dots%20for%20the%20Development%20of%20High-Performance%20Photovoltaic%20and%20Broadband%20Photodiodes&rft.jtitle=ACS%20nano&rft.au=Zeng,%20Peiyu&rft.date=2022-06-28&rft.volume=16&rft.issue=6&rft.spage=9329&rft.epage=9338&rft.pages=9329-9338&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.2c02012&rft_dat=%3Cpubmed_cross%3E35687375%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/35687375&rfr_iscdi=true