Environmentally Adaptive Shape-Morphing Microrobots for Localized Cancer Cell Treatment

Microrobots have attracted considerable attention due to their extensive applications in microobject manipulation and targeted drug delivery. To realize more complex micro-/nanocargo manipulation (e.g., encapsulation and release) in biological applications, it is highly desirable to endow microrobot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2021-11, Vol.15 (11), p.18048-18059
Hauptverfasser: Xin, Chen, Jin, Dongdong, Hu, Yanlei, Yang, Liang, Li, Rui, Wang, Li, Ren, Zhongguo, Wang, Dawei, Ji, Shengyun, Hu, Kai, Pan, Deng, Wu, Hao, Zhu, Wulin, Shen, Zuojun, Wang, Yucai, Li, Jiawen, Zhang, Li, Wu, Dong, Chu, Jiaru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microrobots have attracted considerable attention due to their extensive applications in microobject manipulation and targeted drug delivery. To realize more complex micro-/nanocargo manipulation (e.g., encapsulation and release) in biological applications, it is highly desirable to endow microrobots with a shape-morphing adaptation to dynamic environments. Here, environmentally adaptive shape-morphing microrobots (SMMRs) have been developed by programmatically encoding different expansion rates in a pH-responsive hydrogel. Due to a combination with magnetic propulsion, a shape-morphing microcrab (SMMC) is able to perform targeted microparticle delivery, including gripping, transporting, and releasing by “opening–closing” of a claw. As a proof-of-concept demonstration, a shape-morphing microfish (SMMF) is designed to encapsulate a drug (doxorubicin (DOX)) by closing its mouth in phosphate-buffered saline (PBS, pH ∼ 7.4) and release the drug by opening its mouth in a slightly acidic solution (pH < 7). Furthermore, localized HeLa cell treatment in an artificial vascular network is realized by “opening–closing” of the SMMF mouth. With the continuous optimization of size, motion control, and imaging technology, these magnetic SMMRs will provide ideal platforms for complex microcargo operations and on-demand drug release.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.1c06651