3D-Printing of Pure Metal–Organic Framework Monoliths

Metal–organic frameworks (MOFs) are usually synthesized in powder form. For many practical applications, MOFs need to be shaped into monoliths that can be easily handled. However, conventional shaping methods, such as pelletization, often result in a decrease in functionality. Recently, MOF-containi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS materials letters 2019-07, Vol.1 (1), p.147-153
Hauptverfasser: Lim, Gwendolyn J. H, Wu, Yue, Shah, Bhuvan B, Koh, J. Justin, Liu, Connie K, Zhao, Dan, Cheetham, Anthony K, Wang, John, Ding, Jun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 153
container_issue 1
container_start_page 147
container_title ACS materials letters
container_volume 1
creator Lim, Gwendolyn J. H
Wu, Yue
Shah, Bhuvan B
Koh, J. Justin
Liu, Connie K
Zhao, Dan
Cheetham, Anthony K
Wang, John
Ding, Jun
description Metal–organic frameworks (MOFs) are usually synthesized in powder form. For many practical applications, MOFs need to be shaped into monoliths that can be easily handled. However, conventional shaping methods, such as pelletization, often result in a decrease in functionality. Recently, MOF-containing monoliths have been made using direct ink writing (DIW; extrusion 3D printing), but to date, high additive loadings have been required. In this work, we demonstrate that colloidal gels containing only ethanol and Cu3(BTC)2 (BTC = 1,3,5-benzenetricarboxylate) (HKUST-1) nanoparticles can be used directly as an ink for the DIW of pure densely packed and self-standing MOF monoliths. The MOF gel shows ideal rheological properties for 3D extrusion-based printing, suggesting this method may be generalized to other MOF families that form gels. Importantly, the accessible porosity and surface area of the MOF is retained well after shaping. The 3D printed HKUST-1 monolith displays an exceptionally high BET surface area of 1134 m2/g, and a high mesopore volume. We demonstrate that for methane storage, a classical application of HKUST-1, the 3D printed monolith is comparable or superior to monoliths formed by other shaping methods.
doi_str_mv 10.1021/acsmaterialslett.9b00069
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsmaterialslett_9b00069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a399791475</sourcerecordid><originalsourceid>FETCH-LOGICAL-a304t-5f68b071d096c5f88f2f2086fa254a81c1299c2645a8d62541759fb4efd3e5933</originalsourceid><addsrcrecordid>eNqFkM1KAzEURoMoWGrfIS8wNf-TLKVaFVraha5DJpPU1OmMJCniznfwDX2SRtqFuHF1Py7n3AsfABCjKUYEXxubdia7GEyXOpfzVDUIIaHOwIgIqiqmanX-K1-CSUrbghAssGJsBGp6W61j6HPoN3DwcL2PDi5dNt3359cqbkwfLJxHs3PvQ3yFy6EfupBf0hW48OWpm5zmGDzP755mD9Vidf84u1lUhiKWK-6FbFCNW6SE5V5KTzxBUnhDODMSW0yUskQwbmQryg7XXPmGOd9SxxWlYyCPd20cUorO67cYdiZ-aIz0Twf6bwf61EFR2VEthN4O-9gX4n_tANObZ2s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>3D-Printing of Pure Metal–Organic Framework Monoliths</title><source>American Chemical Society Journals</source><creator>Lim, Gwendolyn J. H ; Wu, Yue ; Shah, Bhuvan B ; Koh, J. Justin ; Liu, Connie K ; Zhao, Dan ; Cheetham, Anthony K ; Wang, John ; Ding, Jun</creator><creatorcontrib>Lim, Gwendolyn J. H ; Wu, Yue ; Shah, Bhuvan B ; Koh, J. Justin ; Liu, Connie K ; Zhao, Dan ; Cheetham, Anthony K ; Wang, John ; Ding, Jun</creatorcontrib><description>Metal–organic frameworks (MOFs) are usually synthesized in powder form. For many practical applications, MOFs need to be shaped into monoliths that can be easily handled. However, conventional shaping methods, such as pelletization, often result in a decrease in functionality. Recently, MOF-containing monoliths have been made using direct ink writing (DIW; extrusion 3D printing), but to date, high additive loadings have been required. In this work, we demonstrate that colloidal gels containing only ethanol and Cu3(BTC)2 (BTC = 1,3,5-benzenetricarboxylate) (HKUST-1) nanoparticles can be used directly as an ink for the DIW of pure densely packed and self-standing MOF monoliths. The MOF gel shows ideal rheological properties for 3D extrusion-based printing, suggesting this method may be generalized to other MOF families that form gels. Importantly, the accessible porosity and surface area of the MOF is retained well after shaping. The 3D printed HKUST-1 monolith displays an exceptionally high BET surface area of 1134 m2/g, and a high mesopore volume. We demonstrate that for methane storage, a classical application of HKUST-1, the 3D printed monolith is comparable or superior to monoliths formed by other shaping methods.</description><identifier>ISSN: 2639-4979</identifier><identifier>EISSN: 2639-4979</identifier><identifier>DOI: 10.1021/acsmaterialslett.9b00069</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS materials letters, 2019-07, Vol.1 (1), p.147-153</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a304t-5f68b071d096c5f88f2f2086fa254a81c1299c2645a8d62541759fb4efd3e5933</citedby><cites>FETCH-LOGICAL-a304t-5f68b071d096c5f88f2f2086fa254a81c1299c2645a8d62541759fb4efd3e5933</cites><orcidid>0000-0002-6968-2455 ; 0000-0001-6059-8962 ; 0000-0003-2874-8267 ; 0000-0002-4427-2150 ; 0000-0003-1518-4845</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsmaterialslett.9b00069$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsmaterialslett.9b00069$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Lim, Gwendolyn J. H</creatorcontrib><creatorcontrib>Wu, Yue</creatorcontrib><creatorcontrib>Shah, Bhuvan B</creatorcontrib><creatorcontrib>Koh, J. Justin</creatorcontrib><creatorcontrib>Liu, Connie K</creatorcontrib><creatorcontrib>Zhao, Dan</creatorcontrib><creatorcontrib>Cheetham, Anthony K</creatorcontrib><creatorcontrib>Wang, John</creatorcontrib><creatorcontrib>Ding, Jun</creatorcontrib><title>3D-Printing of Pure Metal–Organic Framework Monoliths</title><title>ACS materials letters</title><addtitle>ACS Materials Lett</addtitle><description>Metal–organic frameworks (MOFs) are usually synthesized in powder form. For many practical applications, MOFs need to be shaped into monoliths that can be easily handled. However, conventional shaping methods, such as pelletization, often result in a decrease in functionality. Recently, MOF-containing monoliths have been made using direct ink writing (DIW; extrusion 3D printing), but to date, high additive loadings have been required. In this work, we demonstrate that colloidal gels containing only ethanol and Cu3(BTC)2 (BTC = 1,3,5-benzenetricarboxylate) (HKUST-1) nanoparticles can be used directly as an ink for the DIW of pure densely packed and self-standing MOF monoliths. The MOF gel shows ideal rheological properties for 3D extrusion-based printing, suggesting this method may be generalized to other MOF families that form gels. Importantly, the accessible porosity and surface area of the MOF is retained well after shaping. The 3D printed HKUST-1 monolith displays an exceptionally high BET surface area of 1134 m2/g, and a high mesopore volume. We demonstrate that for methane storage, a classical application of HKUST-1, the 3D printed monolith is comparable or superior to monoliths formed by other shaping methods.</description><issn>2639-4979</issn><issn>2639-4979</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEURoMoWGrfIS8wNf-TLKVaFVraha5DJpPU1OmMJCniznfwDX2SRtqFuHF1Py7n3AsfABCjKUYEXxubdia7GEyXOpfzVDUIIaHOwIgIqiqmanX-K1-CSUrbghAssGJsBGp6W61j6HPoN3DwcL2PDi5dNt3359cqbkwfLJxHs3PvQ3yFy6EfupBf0hW48OWpm5zmGDzP755mD9Vidf84u1lUhiKWK-6FbFCNW6SE5V5KTzxBUnhDODMSW0yUskQwbmQryg7XXPmGOd9SxxWlYyCPd20cUorO67cYdiZ-aIz0Twf6bwf61EFR2VEthN4O-9gX4n_tANObZ2s</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Lim, Gwendolyn J. H</creator><creator>Wu, Yue</creator><creator>Shah, Bhuvan B</creator><creator>Koh, J. Justin</creator><creator>Liu, Connie K</creator><creator>Zhao, Dan</creator><creator>Cheetham, Anthony K</creator><creator>Wang, John</creator><creator>Ding, Jun</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6968-2455</orcidid><orcidid>https://orcid.org/0000-0001-6059-8962</orcidid><orcidid>https://orcid.org/0000-0003-2874-8267</orcidid><orcidid>https://orcid.org/0000-0002-4427-2150</orcidid><orcidid>https://orcid.org/0000-0003-1518-4845</orcidid></search><sort><creationdate>20190701</creationdate><title>3D-Printing of Pure Metal–Organic Framework Monoliths</title><author>Lim, Gwendolyn J. H ; Wu, Yue ; Shah, Bhuvan B ; Koh, J. Justin ; Liu, Connie K ; Zhao, Dan ; Cheetham, Anthony K ; Wang, John ; Ding, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a304t-5f68b071d096c5f88f2f2086fa254a81c1299c2645a8d62541759fb4efd3e5933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lim, Gwendolyn J. H</creatorcontrib><creatorcontrib>Wu, Yue</creatorcontrib><creatorcontrib>Shah, Bhuvan B</creatorcontrib><creatorcontrib>Koh, J. Justin</creatorcontrib><creatorcontrib>Liu, Connie K</creatorcontrib><creatorcontrib>Zhao, Dan</creatorcontrib><creatorcontrib>Cheetham, Anthony K</creatorcontrib><creatorcontrib>Wang, John</creatorcontrib><creatorcontrib>Ding, Jun</creatorcontrib><collection>CrossRef</collection><jtitle>ACS materials letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lim, Gwendolyn J. H</au><au>Wu, Yue</au><au>Shah, Bhuvan B</au><au>Koh, J. Justin</au><au>Liu, Connie K</au><au>Zhao, Dan</au><au>Cheetham, Anthony K</au><au>Wang, John</au><au>Ding, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D-Printing of Pure Metal–Organic Framework Monoliths</atitle><jtitle>ACS materials letters</jtitle><addtitle>ACS Materials Lett</addtitle><date>2019-07-01</date><risdate>2019</risdate><volume>1</volume><issue>1</issue><spage>147</spage><epage>153</epage><pages>147-153</pages><issn>2639-4979</issn><eissn>2639-4979</eissn><abstract>Metal–organic frameworks (MOFs) are usually synthesized in powder form. For many practical applications, MOFs need to be shaped into monoliths that can be easily handled. However, conventional shaping methods, such as pelletization, often result in a decrease in functionality. Recently, MOF-containing monoliths have been made using direct ink writing (DIW; extrusion 3D printing), but to date, high additive loadings have been required. In this work, we demonstrate that colloidal gels containing only ethanol and Cu3(BTC)2 (BTC = 1,3,5-benzenetricarboxylate) (HKUST-1) nanoparticles can be used directly as an ink for the DIW of pure densely packed and self-standing MOF monoliths. The MOF gel shows ideal rheological properties for 3D extrusion-based printing, suggesting this method may be generalized to other MOF families that form gels. Importantly, the accessible porosity and surface area of the MOF is retained well after shaping. The 3D printed HKUST-1 monolith displays an exceptionally high BET surface area of 1134 m2/g, and a high mesopore volume. We demonstrate that for methane storage, a classical application of HKUST-1, the 3D printed monolith is comparable or superior to monoliths formed by other shaping methods.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsmaterialslett.9b00069</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6968-2455</orcidid><orcidid>https://orcid.org/0000-0001-6059-8962</orcidid><orcidid>https://orcid.org/0000-0003-2874-8267</orcidid><orcidid>https://orcid.org/0000-0002-4427-2150</orcidid><orcidid>https://orcid.org/0000-0003-1518-4845</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2639-4979
ispartof ACS materials letters, 2019-07, Vol.1 (1), p.147-153
issn 2639-4979
2639-4979
language eng
recordid cdi_crossref_primary_10_1021_acsmaterialslett_9b00069
source American Chemical Society Journals
title 3D-Printing of Pure Metal–Organic Framework Monoliths
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T20%3A54%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D-Printing%20of%20Pure%20Metal%E2%80%93Organic%20Framework%20Monoliths&rft.jtitle=ACS%20materials%20letters&rft.au=Lim,%20Gwendolyn%20J.%20H&rft.date=2019-07-01&rft.volume=1&rft.issue=1&rft.spage=147&rft.epage=153&rft.pages=147-153&rft.issn=2639-4979&rft.eissn=2639-4979&rft_id=info:doi/10.1021/acsmaterialslett.9b00069&rft_dat=%3Cacs_cross%3Ea399791475%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true