Emerging Trends in Nanomaterials for Photosynthetic Biohybrid Systems

Global warming and climate change are among the most immediate challenges confronting humans in the 21st century. Artificial photosynthesis represents a promising approach to mitigating the environmental crisis. Recently, people demonstrated that interfacing semiconductor, polymer, or metal-based na...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS materials letters 2023-01, Vol.5 (1), p.95-115
Hauptverfasser: Okoro, Goodluck, Husain, Sadang, Saukani, Muhammad, Mutalik, Chinmaya, Yougbaré, Sibidou, Hsiao, Yu-Cheng, Kuo, Tsung-Rong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 115
container_issue 1
container_start_page 95
container_title ACS materials letters
container_volume 5
creator Okoro, Goodluck
Husain, Sadang
Saukani, Muhammad
Mutalik, Chinmaya
Yougbaré, Sibidou
Hsiao, Yu-Cheng
Kuo, Tsung-Rong
description Global warming and climate change are among the most immediate challenges confronting humans in the 21st century. Artificial photosynthesis represents a promising approach to mitigating the environmental crisis. Recently, people demonstrated that interfacing semiconductor, polymer, or metal-based nanomaterials with specific bacteria can generate built-in artificial photosynthetic systems, enabling solar-to-fuel conversion by forming a basic photosynthetic unit from a network of light-harvesting receptors, molecular water splitting and CO2, or proton reduction machinery. As a cutting-edge research direction, several strategies have been employed to create the artificial photosynthetic biohybrids. Notably, understanding of the molecular basis of these photosynthetic biohybrid systems is the key to improving the solar-to-chemical conversion efficiency. In the current review, we highlight the study of charge uptake channels in biohybrid artificial photosynthetic systems using various nanomaterials and microbes. We emphasize the importance of fully understanding the structures and operating mechanisms of these hybrid systems, as well as the criterion to select suitable microbes and photosensitized nanomaterials.
doi_str_mv 10.1021/acsmaterialslett.2c00752
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsmaterialslett_2c00752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>g47694193</sourcerecordid><originalsourceid>FETCH-LOGICAL-a354t-667e9efeb2d2bc68e1c0c7a01016ddc462f5c9768dc6b00144e6637a0a4fdf643</originalsourceid><addsrcrecordid>eNqFkL1OwzAURi0EElXpO_gFUmzHceIRqvIjVYBEmSPHvm5cNTGyzZC3x6hVhViY7h3O-YaDEKZkSQmjt0rHQSUITh3iAVJaMk1IXbELNGOilAWXtbz89V-jRYx7QrIrqOR8htbrAcLOjTu8DTCaiN2IX9Toz7PY-oDfep98nMbUQ3Ia3zvfT11wBr9PMcEQb9CVzSwsTneOPh7W29VTsXl9fF7dbQpVVjwVQtQgwULHDOu0aIBqomtFKKHCGM0Fs5WWtWiMFh0hlHMQosyA4tZYwcs5ao67OvgYA9j2M7hBhamlpP0p0v4t0p6KZJUf1Uy0e_8Vxkz8r30DSh5ttA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Emerging Trends in Nanomaterials for Photosynthetic Biohybrid Systems</title><source>ACS Journals: American Chemical Society Web Editions</source><creator>Okoro, Goodluck ; Husain, Sadang ; Saukani, Muhammad ; Mutalik, Chinmaya ; Yougbaré, Sibidou ; Hsiao, Yu-Cheng ; Kuo, Tsung-Rong</creator><creatorcontrib>Okoro, Goodluck ; Husain, Sadang ; Saukani, Muhammad ; Mutalik, Chinmaya ; Yougbaré, Sibidou ; Hsiao, Yu-Cheng ; Kuo, Tsung-Rong</creatorcontrib><description>Global warming and climate change are among the most immediate challenges confronting humans in the 21st century. Artificial photosynthesis represents a promising approach to mitigating the environmental crisis. Recently, people demonstrated that interfacing semiconductor, polymer, or metal-based nanomaterials with specific bacteria can generate built-in artificial photosynthetic systems, enabling solar-to-fuel conversion by forming a basic photosynthetic unit from a network of light-harvesting receptors, molecular water splitting and CO2, or proton reduction machinery. As a cutting-edge research direction, several strategies have been employed to create the artificial photosynthetic biohybrids. Notably, understanding of the molecular basis of these photosynthetic biohybrid systems is the key to improving the solar-to-chemical conversion efficiency. In the current review, we highlight the study of charge uptake channels in biohybrid artificial photosynthetic systems using various nanomaterials and microbes. We emphasize the importance of fully understanding the structures and operating mechanisms of these hybrid systems, as well as the criterion to select suitable microbes and photosensitized nanomaterials.</description><identifier>ISSN: 2639-4979</identifier><identifier>EISSN: 2639-4979</identifier><identifier>DOI: 10.1021/acsmaterialslett.2c00752</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS materials letters, 2023-01, Vol.5 (1), p.95-115</ispartof><rights>2022 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a354t-667e9efeb2d2bc68e1c0c7a01016ddc462f5c9768dc6b00144e6637a0a4fdf643</citedby><cites>FETCH-LOGICAL-a354t-667e9efeb2d2bc68e1c0c7a01016ddc462f5c9768dc6b00144e6637a0a4fdf643</cites><orcidid>0000-0002-8124-9945 ; 0000-0003-4937-951X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsmaterialslett.2c00752$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsmaterialslett.2c00752$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Okoro, Goodluck</creatorcontrib><creatorcontrib>Husain, Sadang</creatorcontrib><creatorcontrib>Saukani, Muhammad</creatorcontrib><creatorcontrib>Mutalik, Chinmaya</creatorcontrib><creatorcontrib>Yougbaré, Sibidou</creatorcontrib><creatorcontrib>Hsiao, Yu-Cheng</creatorcontrib><creatorcontrib>Kuo, Tsung-Rong</creatorcontrib><title>Emerging Trends in Nanomaterials for Photosynthetic Biohybrid Systems</title><title>ACS materials letters</title><addtitle>ACS Materials Lett</addtitle><description>Global warming and climate change are among the most immediate challenges confronting humans in the 21st century. Artificial photosynthesis represents a promising approach to mitigating the environmental crisis. Recently, people demonstrated that interfacing semiconductor, polymer, or metal-based nanomaterials with specific bacteria can generate built-in artificial photosynthetic systems, enabling solar-to-fuel conversion by forming a basic photosynthetic unit from a network of light-harvesting receptors, molecular water splitting and CO2, or proton reduction machinery. As a cutting-edge research direction, several strategies have been employed to create the artificial photosynthetic biohybrids. Notably, understanding of the molecular basis of these photosynthetic biohybrid systems is the key to improving the solar-to-chemical conversion efficiency. In the current review, we highlight the study of charge uptake channels in biohybrid artificial photosynthetic systems using various nanomaterials and microbes. We emphasize the importance of fully understanding the structures and operating mechanisms of these hybrid systems, as well as the criterion to select suitable microbes and photosensitized nanomaterials.</description><issn>2639-4979</issn><issn>2639-4979</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAURi0EElXpO_gFUmzHceIRqvIjVYBEmSPHvm5cNTGyzZC3x6hVhViY7h3O-YaDEKZkSQmjt0rHQSUITh3iAVJaMk1IXbELNGOilAWXtbz89V-jRYx7QrIrqOR8htbrAcLOjTu8DTCaiN2IX9Toz7PY-oDfep98nMbUQ3Ia3zvfT11wBr9PMcEQb9CVzSwsTneOPh7W29VTsXl9fF7dbQpVVjwVQtQgwULHDOu0aIBqomtFKKHCGM0Fs5WWtWiMFh0hlHMQosyA4tZYwcs5ao67OvgYA9j2M7hBhamlpP0p0v4t0p6KZJUf1Uy0e_8Vxkz8r30DSh5ttA</recordid><startdate>20230102</startdate><enddate>20230102</enddate><creator>Okoro, Goodluck</creator><creator>Husain, Sadang</creator><creator>Saukani, Muhammad</creator><creator>Mutalik, Chinmaya</creator><creator>Yougbaré, Sibidou</creator><creator>Hsiao, Yu-Cheng</creator><creator>Kuo, Tsung-Rong</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8124-9945</orcidid><orcidid>https://orcid.org/0000-0003-4937-951X</orcidid></search><sort><creationdate>20230102</creationdate><title>Emerging Trends in Nanomaterials for Photosynthetic Biohybrid Systems</title><author>Okoro, Goodluck ; Husain, Sadang ; Saukani, Muhammad ; Mutalik, Chinmaya ; Yougbaré, Sibidou ; Hsiao, Yu-Cheng ; Kuo, Tsung-Rong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a354t-667e9efeb2d2bc68e1c0c7a01016ddc462f5c9768dc6b00144e6637a0a4fdf643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okoro, Goodluck</creatorcontrib><creatorcontrib>Husain, Sadang</creatorcontrib><creatorcontrib>Saukani, Muhammad</creatorcontrib><creatorcontrib>Mutalik, Chinmaya</creatorcontrib><creatorcontrib>Yougbaré, Sibidou</creatorcontrib><creatorcontrib>Hsiao, Yu-Cheng</creatorcontrib><creatorcontrib>Kuo, Tsung-Rong</creatorcontrib><collection>CrossRef</collection><jtitle>ACS materials letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okoro, Goodluck</au><au>Husain, Sadang</au><au>Saukani, Muhammad</au><au>Mutalik, Chinmaya</au><au>Yougbaré, Sibidou</au><au>Hsiao, Yu-Cheng</au><au>Kuo, Tsung-Rong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emerging Trends in Nanomaterials for Photosynthetic Biohybrid Systems</atitle><jtitle>ACS materials letters</jtitle><addtitle>ACS Materials Lett</addtitle><date>2023-01-02</date><risdate>2023</risdate><volume>5</volume><issue>1</issue><spage>95</spage><epage>115</epage><pages>95-115</pages><issn>2639-4979</issn><eissn>2639-4979</eissn><abstract>Global warming and climate change are among the most immediate challenges confronting humans in the 21st century. Artificial photosynthesis represents a promising approach to mitigating the environmental crisis. Recently, people demonstrated that interfacing semiconductor, polymer, or metal-based nanomaterials with specific bacteria can generate built-in artificial photosynthetic systems, enabling solar-to-fuel conversion by forming a basic photosynthetic unit from a network of light-harvesting receptors, molecular water splitting and CO2, or proton reduction machinery. As a cutting-edge research direction, several strategies have been employed to create the artificial photosynthetic biohybrids. Notably, understanding of the molecular basis of these photosynthetic biohybrid systems is the key to improving the solar-to-chemical conversion efficiency. In the current review, we highlight the study of charge uptake channels in biohybrid artificial photosynthetic systems using various nanomaterials and microbes. We emphasize the importance of fully understanding the structures and operating mechanisms of these hybrid systems, as well as the criterion to select suitable microbes and photosensitized nanomaterials.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsmaterialslett.2c00752</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-8124-9945</orcidid><orcidid>https://orcid.org/0000-0003-4937-951X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2639-4979
ispartof ACS materials letters, 2023-01, Vol.5 (1), p.95-115
issn 2639-4979
2639-4979
language eng
recordid cdi_crossref_primary_10_1021_acsmaterialslett_2c00752
source ACS Journals: American Chemical Society Web Editions
title Emerging Trends in Nanomaterials for Photosynthetic Biohybrid Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A57%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emerging%20Trends%20in%20Nanomaterials%20for%20Photosynthetic%20Biohybrid%20Systems&rft.jtitle=ACS%20materials%20letters&rft.au=Okoro,%20Goodluck&rft.date=2023-01-02&rft.volume=5&rft.issue=1&rft.spage=95&rft.epage=115&rft.pages=95-115&rft.issn=2639-4979&rft.eissn=2639-4979&rft_id=info:doi/10.1021/acsmaterialslett.2c00752&rft_dat=%3Cacs_cross%3Eg47694193%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true