Perspective on High-Rate Alkaline Water Splitting

Alkaline water splitting (AWS) represents a sustainable technology for hydrogen gas generation. In comparison to proton exchange membrane water splitting, AWS is an economical approach because non-platinum-group metal-based materials can be used as catalysts and it avoids the usage of expensive prot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS materials letters 2021-02, Vol.3 (2), p.224-234
Hauptverfasser: Kou, Tianyi, Wang, Shanwen, Li, Yat
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 234
container_issue 2
container_start_page 224
container_title ACS materials letters
container_volume 3
creator Kou, Tianyi
Wang, Shanwen
Li, Yat
description Alkaline water splitting (AWS) represents a sustainable technology for hydrogen gas generation. In comparison to proton exchange membrane water splitting, AWS is an economical approach because non-platinum-group metal-based materials can be used as catalysts and it avoids the usage of expensive proton exchange membranes. Despite the rapid development of cost-effective and intrinsically active catalysts that showed record-breaking performances at low current density (tens of mA cm–2), the cell efficiency of AWS at large current density (>400 mA cm–2) is still limited. In this Perspective, we aim to share our thoughts on the design of hydrogen evolution and oxygen evolution catalysts for high-rate AWS, the possible problems in catalyst’s performance evaluation, and the stability issues of catalysts.
doi_str_mv 10.1021/acsmaterialslett.0c00536
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsmaterialslett_0c00536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>i24006988</sourcerecordid><originalsourceid>FETCH-LOGICAL-a370t-c96d26dd053352f4f06a8e4184e46a51aa596cfeaea0c227a2d9b504d915e3693</originalsourceid><addsrcrecordid>eNqFj81OwzAQhC0EElXpO_gFUvwXJz5WFVCkSkX8iKO1OJvikiaRbZB4e1y1B8SF085hvpkdQihnc84EvwYX95AweOhihynNmWOslPqMTISWplCmMue_9CWZxbhjLLOaG6UmhD9giCO65L-QDj1d-e178Zgz6aL7gM73SF8PDfRp7HxKvt9ekYs21-HsdKfk5fbmebkq1pu7--ViXYCsWCqc0Y3QTZPfkaVoVcs01Kh4rVBpKDlAabRrERCYE6IC0Zi3kqnG8BKlNnJK6mOuC0OMAVs7Br-H8G05s4f19u96e1qfUXVEs8Puhs_QZ8f_2A-8d2T4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Perspective on High-Rate Alkaline Water Splitting</title><source>ACS Publications</source><creator>Kou, Tianyi ; Wang, Shanwen ; Li, Yat</creator><creatorcontrib>Kou, Tianyi ; Wang, Shanwen ; Li, Yat</creatorcontrib><description>Alkaline water splitting (AWS) represents a sustainable technology for hydrogen gas generation. In comparison to proton exchange membrane water splitting, AWS is an economical approach because non-platinum-group metal-based materials can be used as catalysts and it avoids the usage of expensive proton exchange membranes. Despite the rapid development of cost-effective and intrinsically active catalysts that showed record-breaking performances at low current density (tens of mA cm–2), the cell efficiency of AWS at large current density (&gt;400 mA cm–2) is still limited. In this Perspective, we aim to share our thoughts on the design of hydrogen evolution and oxygen evolution catalysts for high-rate AWS, the possible problems in catalyst’s performance evaluation, and the stability issues of catalysts.</description><identifier>ISSN: 2639-4979</identifier><identifier>EISSN: 2639-4979</identifier><identifier>DOI: 10.1021/acsmaterialslett.0c00536</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS materials letters, 2021-02, Vol.3 (2), p.224-234</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a370t-c96d26dd053352f4f06a8e4184e46a51aa596cfeaea0c227a2d9b504d915e3693</citedby><cites>FETCH-LOGICAL-a370t-c96d26dd053352f4f06a8e4184e46a51aa596cfeaea0c227a2d9b504d915e3693</cites><orcidid>0000-0002-8058-2084 ; 0000-0002-1563-7819</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsmaterialslett.0c00536$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsmaterialslett.0c00536$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Kou, Tianyi</creatorcontrib><creatorcontrib>Wang, Shanwen</creatorcontrib><creatorcontrib>Li, Yat</creatorcontrib><title>Perspective on High-Rate Alkaline Water Splitting</title><title>ACS materials letters</title><addtitle>ACS Materials Lett</addtitle><description>Alkaline water splitting (AWS) represents a sustainable technology for hydrogen gas generation. In comparison to proton exchange membrane water splitting, AWS is an economical approach because non-platinum-group metal-based materials can be used as catalysts and it avoids the usage of expensive proton exchange membranes. Despite the rapid development of cost-effective and intrinsically active catalysts that showed record-breaking performances at low current density (tens of mA cm–2), the cell efficiency of AWS at large current density (&gt;400 mA cm–2) is still limited. In this Perspective, we aim to share our thoughts on the design of hydrogen evolution and oxygen evolution catalysts for high-rate AWS, the possible problems in catalyst’s performance evaluation, and the stability issues of catalysts.</description><issn>2639-4979</issn><issn>2639-4979</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFj81OwzAQhC0EElXpO_gFUvwXJz5WFVCkSkX8iKO1OJvikiaRbZB4e1y1B8SF085hvpkdQihnc84EvwYX95AweOhihynNmWOslPqMTISWplCmMue_9CWZxbhjLLOaG6UmhD9giCO65L-QDj1d-e178Zgz6aL7gM73SF8PDfRp7HxKvt9ekYs21-HsdKfk5fbmebkq1pu7--ViXYCsWCqc0Y3QTZPfkaVoVcs01Kh4rVBpKDlAabRrERCYE6IC0Zi3kqnG8BKlNnJK6mOuC0OMAVs7Br-H8G05s4f19u96e1qfUXVEs8Puhs_QZ8f_2A-8d2T4</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Kou, Tianyi</creator><creator>Wang, Shanwen</creator><creator>Li, Yat</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8058-2084</orcidid><orcidid>https://orcid.org/0000-0002-1563-7819</orcidid></search><sort><creationdate>20210201</creationdate><title>Perspective on High-Rate Alkaline Water Splitting</title><author>Kou, Tianyi ; Wang, Shanwen ; Li, Yat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a370t-c96d26dd053352f4f06a8e4184e46a51aa596cfeaea0c227a2d9b504d915e3693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kou, Tianyi</creatorcontrib><creatorcontrib>Wang, Shanwen</creatorcontrib><creatorcontrib>Li, Yat</creatorcontrib><collection>CrossRef</collection><jtitle>ACS materials letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kou, Tianyi</au><au>Wang, Shanwen</au><au>Li, Yat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Perspective on High-Rate Alkaline Water Splitting</atitle><jtitle>ACS materials letters</jtitle><addtitle>ACS Materials Lett</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>3</volume><issue>2</issue><spage>224</spage><epage>234</epage><pages>224-234</pages><issn>2639-4979</issn><eissn>2639-4979</eissn><abstract>Alkaline water splitting (AWS) represents a sustainable technology for hydrogen gas generation. In comparison to proton exchange membrane water splitting, AWS is an economical approach because non-platinum-group metal-based materials can be used as catalysts and it avoids the usage of expensive proton exchange membranes. Despite the rapid development of cost-effective and intrinsically active catalysts that showed record-breaking performances at low current density (tens of mA cm–2), the cell efficiency of AWS at large current density (&gt;400 mA cm–2) is still limited. In this Perspective, we aim to share our thoughts on the design of hydrogen evolution and oxygen evolution catalysts for high-rate AWS, the possible problems in catalyst’s performance evaluation, and the stability issues of catalysts.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsmaterialslett.0c00536</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8058-2084</orcidid><orcidid>https://orcid.org/0000-0002-1563-7819</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2639-4979
ispartof ACS materials letters, 2021-02, Vol.3 (2), p.224-234
issn 2639-4979
2639-4979
language eng
recordid cdi_crossref_primary_10_1021_acsmaterialslett_0c00536
source ACS Publications
title Perspective on High-Rate Alkaline Water Splitting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A58%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Perspective%20on%20High-Rate%20Alkaline%20Water%20Splitting&rft.jtitle=ACS%20materials%20letters&rft.au=Kou,%20Tianyi&rft.date=2021-02-01&rft.volume=3&rft.issue=2&rft.spage=224&rft.epage=234&rft.pages=224-234&rft.issn=2639-4979&rft.eissn=2639-4979&rft_id=info:doi/10.1021/acsmaterialslett.0c00536&rft_dat=%3Cacs_cross%3Ei24006988%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true