Nanocarriers for Transgene Expression in Pollen as a Plant Biotechnology Tool

As the male gametophyte of flowering plants, pollen grains are ideal targets for the introduction of transgenes for plant genetic engineering and crop improvement. However, the difficulty of delivering exogenous DNA into pollen grains, because of chemically inert cell walls, has hindered their wides...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS materials letters 2020-09, Vol.2 (9), p.1057-1066
Hauptverfasser: Lew, Tedrick Thomas Salim, Park, Minkyung, Wang, Yizhi, Gordiichuk, Pavlo, Yeap, Wan-Chin, Mohd Rais, Siti Khadijah, Kulaveerasingam, Harikrishna, Strano, Michael S
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1066
container_issue 9
container_start_page 1057
container_title ACS materials letters
container_volume 2
creator Lew, Tedrick Thomas Salim
Park, Minkyung
Wang, Yizhi
Gordiichuk, Pavlo
Yeap, Wan-Chin
Mohd Rais, Siti Khadijah
Kulaveerasingam, Harikrishna
Strano, Michael S
description As the male gametophyte of flowering plants, pollen grains are ideal targets for the introduction of transgenes for plant genetic engineering and crop improvement. However, the difficulty of delivering exogenous DNA into pollen grains, because of chemically inert cell walls, has hindered their widespread application in plant biotechnology. Herein, we report a new class of nanocarriers, composed of imidazolium (IM)-functionalized single-walled carbon nanotubes (SWNTs), which can efficiently traverse past pollen barriers and deliver genes without external physical aid. IM-SWNTs display high biocompatibility with pollen grains, compared to existing SWNT nanocarriers previously used for cargo delivery into living plant cells. Using IM-SWNTs as nanotransporters, we investigate the compatibility of various pollen-specific promoters with oil palm pollen transcription machinery. We show that nanoparticle transport past the pollen plasma membrane is mainly controlled by its zeta potential, and we describe this entry mechanism with the lipid exchange envelope penetration model. We further estimate the pollen membrane effective dielectric constant with this model. These findings provide insights for the rational design and refinement of nanocarriers for plant biotechnology applications.
doi_str_mv 10.1021/acsmaterialslett.0c00247
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsmaterialslett_0c00247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b917217263</sourcerecordid><originalsourceid>FETCH-LOGICAL-a370t-7ad4a2e6510453e0a65d71f67715373e1b6fc8360963e1e0822b4fc077d0237c3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWGr_Q_7A1snHJt2jlvoBVXtYz8s0na1b0qQkK9h_70p7EC-e5h14nmF4GeMCpgKkuEWX99hT6tBnT30_BQcgtb1gI2lUVejKVpe_8jWb5LyDgRFGVFqP2MsrhugwpY5S5m1MvE4Y8pYC8cXXIVHOXQy8C3wVvafAMXPkK4-h5_dd7Ml9hOjj9sjrGP0Nu2qHV2hynmP2_rCo50_F8u3xeX63LFBZ6AuLG42STClAl4oATbmxojXWilJZRWJtWjdTBiozLAQzKde6dWDtBqSyTo3Z7HTXpZhzorY5pG6P6dgIaH6aaf4205ybGVR9Ugei2cXPFAbif-0b2Gxupw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nanocarriers for Transgene Expression in Pollen as a Plant Biotechnology Tool</title><source>American Chemical Society Journals</source><creator>Lew, Tedrick Thomas Salim ; Park, Minkyung ; Wang, Yizhi ; Gordiichuk, Pavlo ; Yeap, Wan-Chin ; Mohd Rais, Siti Khadijah ; Kulaveerasingam, Harikrishna ; Strano, Michael S</creator><creatorcontrib>Lew, Tedrick Thomas Salim ; Park, Minkyung ; Wang, Yizhi ; Gordiichuk, Pavlo ; Yeap, Wan-Chin ; Mohd Rais, Siti Khadijah ; Kulaveerasingam, Harikrishna ; Strano, Michael S</creatorcontrib><description>As the male gametophyte of flowering plants, pollen grains are ideal targets for the introduction of transgenes for plant genetic engineering and crop improvement. However, the difficulty of delivering exogenous DNA into pollen grains, because of chemically inert cell walls, has hindered their widespread application in plant biotechnology. Herein, we report a new class of nanocarriers, composed of imidazolium (IM)-functionalized single-walled carbon nanotubes (SWNTs), which can efficiently traverse past pollen barriers and deliver genes without external physical aid. IM-SWNTs display high biocompatibility with pollen grains, compared to existing SWNT nanocarriers previously used for cargo delivery into living plant cells. Using IM-SWNTs as nanotransporters, we investigate the compatibility of various pollen-specific promoters with oil palm pollen transcription machinery. We show that nanoparticle transport past the pollen plasma membrane is mainly controlled by its zeta potential, and we describe this entry mechanism with the lipid exchange envelope penetration model. We further estimate the pollen membrane effective dielectric constant with this model. These findings provide insights for the rational design and refinement of nanocarriers for plant biotechnology applications.</description><identifier>ISSN: 2639-4979</identifier><identifier>EISSN: 2639-4979</identifier><identifier>DOI: 10.1021/acsmaterialslett.0c00247</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS materials letters, 2020-09, Vol.2 (9), p.1057-1066</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a370t-7ad4a2e6510453e0a65d71f67715373e1b6fc8360963e1e0822b4fc077d0237c3</citedby><cites>FETCH-LOGICAL-a370t-7ad4a2e6510453e0a65d71f67715373e1b6fc8360963e1e0822b4fc077d0237c3</cites><orcidid>0000-0002-4815-9921 ; 0000-0003-2944-808X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsmaterialslett.0c00247$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsmaterialslett.0c00247$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Lew, Tedrick Thomas Salim</creatorcontrib><creatorcontrib>Park, Minkyung</creatorcontrib><creatorcontrib>Wang, Yizhi</creatorcontrib><creatorcontrib>Gordiichuk, Pavlo</creatorcontrib><creatorcontrib>Yeap, Wan-Chin</creatorcontrib><creatorcontrib>Mohd Rais, Siti Khadijah</creatorcontrib><creatorcontrib>Kulaveerasingam, Harikrishna</creatorcontrib><creatorcontrib>Strano, Michael S</creatorcontrib><title>Nanocarriers for Transgene Expression in Pollen as a Plant Biotechnology Tool</title><title>ACS materials letters</title><addtitle>ACS Materials Lett</addtitle><description>As the male gametophyte of flowering plants, pollen grains are ideal targets for the introduction of transgenes for plant genetic engineering and crop improvement. However, the difficulty of delivering exogenous DNA into pollen grains, because of chemically inert cell walls, has hindered their widespread application in plant biotechnology. Herein, we report a new class of nanocarriers, composed of imidazolium (IM)-functionalized single-walled carbon nanotubes (SWNTs), which can efficiently traverse past pollen barriers and deliver genes without external physical aid. IM-SWNTs display high biocompatibility with pollen grains, compared to existing SWNT nanocarriers previously used for cargo delivery into living plant cells. Using IM-SWNTs as nanotransporters, we investigate the compatibility of various pollen-specific promoters with oil palm pollen transcription machinery. We show that nanoparticle transport past the pollen plasma membrane is mainly controlled by its zeta potential, and we describe this entry mechanism with the lipid exchange envelope penetration model. We further estimate the pollen membrane effective dielectric constant with this model. These findings provide insights for the rational design and refinement of nanocarriers for plant biotechnology applications.</description><issn>2639-4979</issn><issn>2639-4979</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWGr_Q_7A1snHJt2jlvoBVXtYz8s0na1b0qQkK9h_70p7EC-e5h14nmF4GeMCpgKkuEWX99hT6tBnT30_BQcgtb1gI2lUVejKVpe_8jWb5LyDgRFGVFqP2MsrhugwpY5S5m1MvE4Y8pYC8cXXIVHOXQy8C3wVvafAMXPkK4-h5_dd7Ml9hOjj9sjrGP0Nu2qHV2hynmP2_rCo50_F8u3xeX63LFBZ6AuLG42STClAl4oATbmxojXWilJZRWJtWjdTBiozLAQzKde6dWDtBqSyTo3Z7HTXpZhzorY5pG6P6dgIaH6aaf4205ybGVR9Ugei2cXPFAbif-0b2Gxupw</recordid><startdate>20200908</startdate><enddate>20200908</enddate><creator>Lew, Tedrick Thomas Salim</creator><creator>Park, Minkyung</creator><creator>Wang, Yizhi</creator><creator>Gordiichuk, Pavlo</creator><creator>Yeap, Wan-Chin</creator><creator>Mohd Rais, Siti Khadijah</creator><creator>Kulaveerasingam, Harikrishna</creator><creator>Strano, Michael S</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4815-9921</orcidid><orcidid>https://orcid.org/0000-0003-2944-808X</orcidid></search><sort><creationdate>20200908</creationdate><title>Nanocarriers for Transgene Expression in Pollen as a Plant Biotechnology Tool</title><author>Lew, Tedrick Thomas Salim ; Park, Minkyung ; Wang, Yizhi ; Gordiichuk, Pavlo ; Yeap, Wan-Chin ; Mohd Rais, Siti Khadijah ; Kulaveerasingam, Harikrishna ; Strano, Michael S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a370t-7ad4a2e6510453e0a65d71f67715373e1b6fc8360963e1e0822b4fc077d0237c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lew, Tedrick Thomas Salim</creatorcontrib><creatorcontrib>Park, Minkyung</creatorcontrib><creatorcontrib>Wang, Yizhi</creatorcontrib><creatorcontrib>Gordiichuk, Pavlo</creatorcontrib><creatorcontrib>Yeap, Wan-Chin</creatorcontrib><creatorcontrib>Mohd Rais, Siti Khadijah</creatorcontrib><creatorcontrib>Kulaveerasingam, Harikrishna</creatorcontrib><creatorcontrib>Strano, Michael S</creatorcontrib><collection>CrossRef</collection><jtitle>ACS materials letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lew, Tedrick Thomas Salim</au><au>Park, Minkyung</au><au>Wang, Yizhi</au><au>Gordiichuk, Pavlo</au><au>Yeap, Wan-Chin</au><au>Mohd Rais, Siti Khadijah</au><au>Kulaveerasingam, Harikrishna</au><au>Strano, Michael S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanocarriers for Transgene Expression in Pollen as a Plant Biotechnology Tool</atitle><jtitle>ACS materials letters</jtitle><addtitle>ACS Materials Lett</addtitle><date>2020-09-08</date><risdate>2020</risdate><volume>2</volume><issue>9</issue><spage>1057</spage><epage>1066</epage><pages>1057-1066</pages><issn>2639-4979</issn><eissn>2639-4979</eissn><abstract>As the male gametophyte of flowering plants, pollen grains are ideal targets for the introduction of transgenes for plant genetic engineering and crop improvement. However, the difficulty of delivering exogenous DNA into pollen grains, because of chemically inert cell walls, has hindered their widespread application in plant biotechnology. Herein, we report a new class of nanocarriers, composed of imidazolium (IM)-functionalized single-walled carbon nanotubes (SWNTs), which can efficiently traverse past pollen barriers and deliver genes without external physical aid. IM-SWNTs display high biocompatibility with pollen grains, compared to existing SWNT nanocarriers previously used for cargo delivery into living plant cells. Using IM-SWNTs as nanotransporters, we investigate the compatibility of various pollen-specific promoters with oil palm pollen transcription machinery. We show that nanoparticle transport past the pollen plasma membrane is mainly controlled by its zeta potential, and we describe this entry mechanism with the lipid exchange envelope penetration model. We further estimate the pollen membrane effective dielectric constant with this model. These findings provide insights for the rational design and refinement of nanocarriers for plant biotechnology applications.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsmaterialslett.0c00247</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4815-9921</orcidid><orcidid>https://orcid.org/0000-0003-2944-808X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2639-4979
ispartof ACS materials letters, 2020-09, Vol.2 (9), p.1057-1066
issn 2639-4979
2639-4979
language eng
recordid cdi_crossref_primary_10_1021_acsmaterialslett_0c00247
source American Chemical Society Journals
title Nanocarriers for Transgene Expression in Pollen as a Plant Biotechnology Tool
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A27%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanocarriers%20for%20Transgene%20Expression%20in%20Pollen%20as%20a%20Plant%20Biotechnology%20Tool&rft.jtitle=ACS%20materials%20letters&rft.au=Lew,%20Tedrick%20Thomas%20Salim&rft.date=2020-09-08&rft.volume=2&rft.issue=9&rft.spage=1057&rft.epage=1066&rft.pages=1057-1066&rft.issn=2639-4979&rft.eissn=2639-4979&rft_id=info:doi/10.1021/acsmaterialslett.0c00247&rft_dat=%3Cacs_cross%3Eb917217263%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true