Freshwater Microscopic Algae Detection Based on Deep Neural Network with GAN-Based Augmentation for Imbalanced Algal Data

Identifying and quantifying algal genera in images are crucial for understanding their ecological impact. Algal data are often imbalanced, limiting detection model accuracy. This paper presents a novel data augmentation method using StyleGAN2-ADA to enhance algal image instance segmentation. StyleGA...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS ES&T water 2024-03, Vol.4 (3), p.982-990
Hauptverfasser: Fung, Benjamin S. B., Chan, Wang Hin, Lo, Irene M. C., Tsang, Danny H. K.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 990
container_issue 3
container_start_page 982
container_title ACS ES&T water
container_volume 4
creator Fung, Benjamin S. B.
Chan, Wang Hin
Lo, Irene M. C.
Tsang, Danny H. K.
description Identifying and quantifying algal genera in images are crucial for understanding their ecological impact. Algal data are often imbalanced, limiting detection model accuracy. This paper presents a novel data augmentation method using StyleGAN2-ADA to enhance algal image instance segmentation. StyleGAN2-ADA generates artificial single-algal images to address data scarcity and imbalance. We train a Cascaded Mask R-CNN with Swin Transformer on a combined data set of real and artificial multigenera algal images and evaluate performance using the COCO mAP metric. The approach improves bounding box detection performance by 17.9% on all genera and 32.1% on rare genera compared with the baseline model. Additionally, 50% more artificial data yield significant enhancements without excessive artificial data use. The GAN-based augmentation technique shows a performance improvement in both Swin-Tiny and ResNet-50 backbone models, suggesting adaptability for various machine learning models. The increased mAP leads to the accurate identification of harmful algae genera, allowing for better prevention and mitigation. This method offers a superior data augmentation solution for accurate algal instance segmentation and can benefit applications challenged by imbalanced and scarce data.
doi_str_mv 10.1021/acsestwater.3c00150
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsestwater_3c00150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b239542473</sourcerecordid><originalsourceid>FETCH-LOGICAL-a289t-25df9ac38134a4bc982da00fe4e5d0589c68ebab2bc86a693fc3fa8d8be2fadb3</originalsourceid><addsrcrecordid>eNp9kM1uwjAQhK2qlYooT9CLXyDgHxKcYwqFIlF6ac_R2llDaEiQbYR4-ybAgVNPO9LsN9odQl45G3Im-AiMRx9OENANpWGMx-yB9ESSsoglcvJ4p5_JwPsdY0zIWPGJ6pHz3KHfXmD6WRrXeNMcSkOzagNIZxjQhLKp6Rt4LGgrZogHusajg6od4dS4X3oqw5YusnV03cqOmz3WAS6gbRxd7jVUUJvOa3MrOoMAL-TJQuVxcJt98jN__55-RKuvxXKarSIQKg2RiAubgpGKyzGMtUmVKIAxi2OMCxar1CQKNWihjUogSaU10oIqlEZhodCyT-Q1t3vOO7T5wZV7cOecs7wrML8rML8V2FKjK9Wa-a45urq98V_iD7obedc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Freshwater Microscopic Algae Detection Based on Deep Neural Network with GAN-Based Augmentation for Imbalanced Algal Data</title><source>ACS Publications</source><creator>Fung, Benjamin S. B. ; Chan, Wang Hin ; Lo, Irene M. C. ; Tsang, Danny H. K.</creator><creatorcontrib>Fung, Benjamin S. B. ; Chan, Wang Hin ; Lo, Irene M. C. ; Tsang, Danny H. K.</creatorcontrib><description>Identifying and quantifying algal genera in images are crucial for understanding their ecological impact. Algal data are often imbalanced, limiting detection model accuracy. This paper presents a novel data augmentation method using StyleGAN2-ADA to enhance algal image instance segmentation. StyleGAN2-ADA generates artificial single-algal images to address data scarcity and imbalance. We train a Cascaded Mask R-CNN with Swin Transformer on a combined data set of real and artificial multigenera algal images and evaluate performance using the COCO mAP metric. The approach improves bounding box detection performance by 17.9% on all genera and 32.1% on rare genera compared with the baseline model. Additionally, 50% more artificial data yield significant enhancements without excessive artificial data use. The GAN-based augmentation technique shows a performance improvement in both Swin-Tiny and ResNet-50 backbone models, suggesting adaptability for various machine learning models. The increased mAP leads to the accurate identification of harmful algae genera, allowing for better prevention and mitigation. This method offers a superior data augmentation solution for accurate algal instance segmentation and can benefit applications challenged by imbalanced and scarce data.</description><identifier>ISSN: 2690-0637</identifier><identifier>EISSN: 2690-0637</identifier><identifier>DOI: 10.1021/acsestwater.3c00150</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS ES&amp;T water, 2024-03, Vol.4 (3), p.982-990</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a289t-25df9ac38134a4bc982da00fe4e5d0589c68ebab2bc86a693fc3fa8d8be2fadb3</citedby><cites>FETCH-LOGICAL-a289t-25df9ac38134a4bc982da00fe4e5d0589c68ebab2bc86a693fc3fa8d8be2fadb3</cites><orcidid>0000-0002-7001-6900 ; 0000-0003-2463-4844</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsestwater.3c00150$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsestwater.3c00150$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Fung, Benjamin S. B.</creatorcontrib><creatorcontrib>Chan, Wang Hin</creatorcontrib><creatorcontrib>Lo, Irene M. C.</creatorcontrib><creatorcontrib>Tsang, Danny H. K.</creatorcontrib><title>Freshwater Microscopic Algae Detection Based on Deep Neural Network with GAN-Based Augmentation for Imbalanced Algal Data</title><title>ACS ES&amp;T water</title><addtitle>ACS EST Water</addtitle><description>Identifying and quantifying algal genera in images are crucial for understanding their ecological impact. Algal data are often imbalanced, limiting detection model accuracy. This paper presents a novel data augmentation method using StyleGAN2-ADA to enhance algal image instance segmentation. StyleGAN2-ADA generates artificial single-algal images to address data scarcity and imbalance. We train a Cascaded Mask R-CNN with Swin Transformer on a combined data set of real and artificial multigenera algal images and evaluate performance using the COCO mAP metric. The approach improves bounding box detection performance by 17.9% on all genera and 32.1% on rare genera compared with the baseline model. Additionally, 50% more artificial data yield significant enhancements without excessive artificial data use. The GAN-based augmentation technique shows a performance improvement in both Swin-Tiny and ResNet-50 backbone models, suggesting adaptability for various machine learning models. The increased mAP leads to the accurate identification of harmful algae genera, allowing for better prevention and mitigation. This method offers a superior data augmentation solution for accurate algal instance segmentation and can benefit applications challenged by imbalanced and scarce data.</description><issn>2690-0637</issn><issn>2690-0637</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1uwjAQhK2qlYooT9CLXyDgHxKcYwqFIlF6ac_R2llDaEiQbYR4-ybAgVNPO9LsN9odQl45G3Im-AiMRx9OENANpWGMx-yB9ESSsoglcvJ4p5_JwPsdY0zIWPGJ6pHz3KHfXmD6WRrXeNMcSkOzagNIZxjQhLKp6Rt4LGgrZogHusajg6od4dS4X3oqw5YusnV03cqOmz3WAS6gbRxd7jVUUJvOa3MrOoMAL-TJQuVxcJt98jN__55-RKuvxXKarSIQKg2RiAubgpGKyzGMtUmVKIAxi2OMCxar1CQKNWihjUogSaU10oIqlEZhodCyT-Q1t3vOO7T5wZV7cOecs7wrML8rML8V2FKjK9Wa-a45urq98V_iD7obedc</recordid><startdate>20240308</startdate><enddate>20240308</enddate><creator>Fung, Benjamin S. B.</creator><creator>Chan, Wang Hin</creator><creator>Lo, Irene M. C.</creator><creator>Tsang, Danny H. K.</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7001-6900</orcidid><orcidid>https://orcid.org/0000-0003-2463-4844</orcidid></search><sort><creationdate>20240308</creationdate><title>Freshwater Microscopic Algae Detection Based on Deep Neural Network with GAN-Based Augmentation for Imbalanced Algal Data</title><author>Fung, Benjamin S. B. ; Chan, Wang Hin ; Lo, Irene M. C. ; Tsang, Danny H. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a289t-25df9ac38134a4bc982da00fe4e5d0589c68ebab2bc86a693fc3fa8d8be2fadb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fung, Benjamin S. B.</creatorcontrib><creatorcontrib>Chan, Wang Hin</creatorcontrib><creatorcontrib>Lo, Irene M. C.</creatorcontrib><creatorcontrib>Tsang, Danny H. K.</creatorcontrib><collection>CrossRef</collection><jtitle>ACS ES&amp;T water</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fung, Benjamin S. B.</au><au>Chan, Wang Hin</au><au>Lo, Irene M. C.</au><au>Tsang, Danny H. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Freshwater Microscopic Algae Detection Based on Deep Neural Network with GAN-Based Augmentation for Imbalanced Algal Data</atitle><jtitle>ACS ES&amp;T water</jtitle><addtitle>ACS EST Water</addtitle><date>2024-03-08</date><risdate>2024</risdate><volume>4</volume><issue>3</issue><spage>982</spage><epage>990</epage><pages>982-990</pages><issn>2690-0637</issn><eissn>2690-0637</eissn><abstract>Identifying and quantifying algal genera in images are crucial for understanding their ecological impact. Algal data are often imbalanced, limiting detection model accuracy. This paper presents a novel data augmentation method using StyleGAN2-ADA to enhance algal image instance segmentation. StyleGAN2-ADA generates artificial single-algal images to address data scarcity and imbalance. We train a Cascaded Mask R-CNN with Swin Transformer on a combined data set of real and artificial multigenera algal images and evaluate performance using the COCO mAP metric. The approach improves bounding box detection performance by 17.9% on all genera and 32.1% on rare genera compared with the baseline model. Additionally, 50% more artificial data yield significant enhancements without excessive artificial data use. The GAN-based augmentation technique shows a performance improvement in both Swin-Tiny and ResNet-50 backbone models, suggesting adaptability for various machine learning models. The increased mAP leads to the accurate identification of harmful algae genera, allowing for better prevention and mitigation. This method offers a superior data augmentation solution for accurate algal instance segmentation and can benefit applications challenged by imbalanced and scarce data.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsestwater.3c00150</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7001-6900</orcidid><orcidid>https://orcid.org/0000-0003-2463-4844</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2690-0637
ispartof ACS ES&T water, 2024-03, Vol.4 (3), p.982-990
issn 2690-0637
2690-0637
language eng
recordid cdi_crossref_primary_10_1021_acsestwater_3c00150
source ACS Publications
title Freshwater Microscopic Algae Detection Based on Deep Neural Network with GAN-Based Augmentation for Imbalanced Algal Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A05%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Freshwater%20Microscopic%20Algae%20Detection%20Based%20on%20Deep%20Neural%20Network%20with%20GAN-Based%20Augmentation%20for%20Imbalanced%20Algal%20Data&rft.jtitle=ACS%20ES&T%20water&rft.au=Fung,%20Benjamin%20S.%20B.&rft.date=2024-03-08&rft.volume=4&rft.issue=3&rft.spage=982&rft.epage=990&rft.pages=982-990&rft.issn=2690-0637&rft.eissn=2690-0637&rft_id=info:doi/10.1021/acsestwater.3c00150&rft_dat=%3Cacs_cross%3Eb239542473%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true