Synergistically Stabilizing Hole Transport Layer and Dual Interface Enables High-Performance Perovskite Solar Cells
The migration and diffusion of Li+ and halide ions, as well as the volatilization of 4-tert butylpyridine (tBP), seriously restrain the long-term operational stability of n-i-p perovskite solar cells (PSCs). Herein, we employ l-glutamic acid dibenzyl ester 4-toluenesulfonate (GADET) to simultaneousl...
Gespeichert in:
Veröffentlicht in: | ACS energy letters 2024-05, Vol.9 (6), p.2615-2625 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2625 |
---|---|
container_issue | 6 |
container_start_page | 2615 |
container_title | ACS energy letters |
container_volume | 9 |
creator | He, Dongmei Ma, Danqing Li, Ru Liu, Baibai Zhou, Qian Yang, Hua Lu, Shirong Zhang, Zhengfu Li, Caiju Li, Xiong Ding, Liming Feng, Jing Yi, Jianhong Chen, Jiangzhao |
description | The migration and diffusion of Li+ and halide ions, as well as the volatilization of 4-tert butylpyridine (tBP), seriously restrain the long-term operational stability of n-i-p perovskite solar cells (PSCs). Herein, we employ l-glutamic acid dibenzyl ester 4-toluenesulfonate (GADET) to simultaneously modulate the hole transport layer (HTL) and buried interface, which stabilizes the HTL and minimizes interfacial energy loss by immobilizing Li+, tBP, and halide ions and passivating dual interface defects. After forming Spiro-OMeTAD•+TFSI–, GADET impedes the Li+ ion diffusion through the ionic bond interaction of P-methylbenzenesulfonate anion and Li+, while the formation of the hydrogen bond of −NH3 + with tBP can suppress the volatilization of tBP. Moreover, the halide ion migration and interfacial trap-induced nonradiative recombination are inhibited via passivating undercoordinated Pb and halide vacancy defects based on multiple chemical bonds. The synergistically modified devices achieve a champion efficiency of 25.06% (certified PCE of 24.08%). Meanwhile, the stability of PSCs was significantly improved. |
doi_str_mv | 10.1021/acsenergylett.4c00816 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsenergylett_4c00816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>i97931573</sourcerecordid><originalsourceid>FETCH-LOGICAL-a243t-dfb62e202d1df1630c16321665954ecd012110ac6dc499e42706cf1204f434e93</originalsourceid><addsrcrecordid>eNqFkNFKAzEQRYMoWGo_QcgPbJ1ks3H3UWq1hUKF1uclzc7W1DRbklRYv96U9kGfZGDmMpczDJeQewZjBpw9KB3Qod_2FmMcCw1QMnlFBjwvIStZVVz_0rdkFMIOAJgsi1QDElb9iTYhGq2s7ekqqo2x5tu4LZ11FunaKxcOnY90oXr0VLmGPh-VpXMX0bdKI506tbEY6MxsP7K3tOz8XrlkJN19hU8Tka46qzydoLXhjty0ygYcXeaQvL9M15NZtli-zidPi0xxkcesaTeSIwfesKZlMgedGmdSFlUhUDfAOGOgtGy0qCoU_BGkbhkH0YpcYJUPSXG-q30Xgse2PnizV76vGdSn8Oo_4dWX8BLHzlyy61139C59-Q_zA0tleWs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Synergistically Stabilizing Hole Transport Layer and Dual Interface Enables High-Performance Perovskite Solar Cells</title><source>ACS Publications</source><creator>He, Dongmei ; Ma, Danqing ; Li, Ru ; Liu, Baibai ; Zhou, Qian ; Yang, Hua ; Lu, Shirong ; Zhang, Zhengfu ; Li, Caiju ; Li, Xiong ; Ding, Liming ; Feng, Jing ; Yi, Jianhong ; Chen, Jiangzhao</creator><creatorcontrib>He, Dongmei ; Ma, Danqing ; Li, Ru ; Liu, Baibai ; Zhou, Qian ; Yang, Hua ; Lu, Shirong ; Zhang, Zhengfu ; Li, Caiju ; Li, Xiong ; Ding, Liming ; Feng, Jing ; Yi, Jianhong ; Chen, Jiangzhao</creatorcontrib><description>The migration and diffusion of Li+ and halide ions, as well as the volatilization of 4-tert butylpyridine (tBP), seriously restrain the long-term operational stability of n-i-p perovskite solar cells (PSCs). Herein, we employ l-glutamic acid dibenzyl ester 4-toluenesulfonate (GADET) to simultaneously modulate the hole transport layer (HTL) and buried interface, which stabilizes the HTL and minimizes interfacial energy loss by immobilizing Li+, tBP, and halide ions and passivating dual interface defects. After forming Spiro-OMeTAD•+TFSI–, GADET impedes the Li+ ion diffusion through the ionic bond interaction of P-methylbenzenesulfonate anion and Li+, while the formation of the hydrogen bond of −NH3 + with tBP can suppress the volatilization of tBP. Moreover, the halide ion migration and interfacial trap-induced nonradiative recombination are inhibited via passivating undercoordinated Pb and halide vacancy defects based on multiple chemical bonds. The synergistically modified devices achieve a champion efficiency of 25.06% (certified PCE of 24.08%). Meanwhile, the stability of PSCs was significantly improved.</description><identifier>ISSN: 2380-8195</identifier><identifier>EISSN: 2380-8195</identifier><identifier>DOI: 10.1021/acsenergylett.4c00816</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS energy letters, 2024-05, Vol.9 (6), p.2615-2625</ispartof><rights>2024 American Chemical Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a243t-dfb62e202d1df1630c16321665954ecd012110ac6dc499e42706cf1204f434e93</cites><orcidid>0000-0001-6437-9150 ; 0000-0002-9066-7217 ; 0000-0002-8932-6968</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsenergylett.4c00816$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsenergylett.4c00816$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2756,27067,27915,27916,56729,56779</link.rule.ids></links><search><creatorcontrib>He, Dongmei</creatorcontrib><creatorcontrib>Ma, Danqing</creatorcontrib><creatorcontrib>Li, Ru</creatorcontrib><creatorcontrib>Liu, Baibai</creatorcontrib><creatorcontrib>Zhou, Qian</creatorcontrib><creatorcontrib>Yang, Hua</creatorcontrib><creatorcontrib>Lu, Shirong</creatorcontrib><creatorcontrib>Zhang, Zhengfu</creatorcontrib><creatorcontrib>Li, Caiju</creatorcontrib><creatorcontrib>Li, Xiong</creatorcontrib><creatorcontrib>Ding, Liming</creatorcontrib><creatorcontrib>Feng, Jing</creatorcontrib><creatorcontrib>Yi, Jianhong</creatorcontrib><creatorcontrib>Chen, Jiangzhao</creatorcontrib><title>Synergistically Stabilizing Hole Transport Layer and Dual Interface Enables High-Performance Perovskite Solar Cells</title><title>ACS energy letters</title><addtitle>ACS Energy Lett</addtitle><description>The migration and diffusion of Li+ and halide ions, as well as the volatilization of 4-tert butylpyridine (tBP), seriously restrain the long-term operational stability of n-i-p perovskite solar cells (PSCs). Herein, we employ l-glutamic acid dibenzyl ester 4-toluenesulfonate (GADET) to simultaneously modulate the hole transport layer (HTL) and buried interface, which stabilizes the HTL and minimizes interfacial energy loss by immobilizing Li+, tBP, and halide ions and passivating dual interface defects. After forming Spiro-OMeTAD•+TFSI–, GADET impedes the Li+ ion diffusion through the ionic bond interaction of P-methylbenzenesulfonate anion and Li+, while the formation of the hydrogen bond of −NH3 + with tBP can suppress the volatilization of tBP. Moreover, the halide ion migration and interfacial trap-induced nonradiative recombination are inhibited via passivating undercoordinated Pb and halide vacancy defects based on multiple chemical bonds. The synergistically modified devices achieve a champion efficiency of 25.06% (certified PCE of 24.08%). Meanwhile, the stability of PSCs was significantly improved.</description><issn>2380-8195</issn><issn>2380-8195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkNFKAzEQRYMoWGo_QcgPbJ1ks3H3UWq1hUKF1uclzc7W1DRbklRYv96U9kGfZGDmMpczDJeQewZjBpw9KB3Qod_2FmMcCw1QMnlFBjwvIStZVVz_0rdkFMIOAJgsi1QDElb9iTYhGq2s7ekqqo2x5tu4LZ11FunaKxcOnY90oXr0VLmGPh-VpXMX0bdKI506tbEY6MxsP7K3tOz8XrlkJN19hU8Tka46qzydoLXhjty0ygYcXeaQvL9M15NZtli-zidPi0xxkcesaTeSIwfesKZlMgedGmdSFlUhUDfAOGOgtGy0qCoU_BGkbhkH0YpcYJUPSXG-q30Xgse2PnizV76vGdSn8Oo_4dWX8BLHzlyy61139C59-Q_zA0tleWs</recordid><startdate>20240508</startdate><enddate>20240508</enddate><creator>He, Dongmei</creator><creator>Ma, Danqing</creator><creator>Li, Ru</creator><creator>Liu, Baibai</creator><creator>Zhou, Qian</creator><creator>Yang, Hua</creator><creator>Lu, Shirong</creator><creator>Zhang, Zhengfu</creator><creator>Li, Caiju</creator><creator>Li, Xiong</creator><creator>Ding, Liming</creator><creator>Feng, Jing</creator><creator>Yi, Jianhong</creator><creator>Chen, Jiangzhao</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6437-9150</orcidid><orcidid>https://orcid.org/0000-0002-9066-7217</orcidid><orcidid>https://orcid.org/0000-0002-8932-6968</orcidid></search><sort><creationdate>20240508</creationdate><title>Synergistically Stabilizing Hole Transport Layer and Dual Interface Enables High-Performance Perovskite Solar Cells</title><author>He, Dongmei ; Ma, Danqing ; Li, Ru ; Liu, Baibai ; Zhou, Qian ; Yang, Hua ; Lu, Shirong ; Zhang, Zhengfu ; Li, Caiju ; Li, Xiong ; Ding, Liming ; Feng, Jing ; Yi, Jianhong ; Chen, Jiangzhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a243t-dfb62e202d1df1630c16321665954ecd012110ac6dc499e42706cf1204f434e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>He, Dongmei</creatorcontrib><creatorcontrib>Ma, Danqing</creatorcontrib><creatorcontrib>Li, Ru</creatorcontrib><creatorcontrib>Liu, Baibai</creatorcontrib><creatorcontrib>Zhou, Qian</creatorcontrib><creatorcontrib>Yang, Hua</creatorcontrib><creatorcontrib>Lu, Shirong</creatorcontrib><creatorcontrib>Zhang, Zhengfu</creatorcontrib><creatorcontrib>Li, Caiju</creatorcontrib><creatorcontrib>Li, Xiong</creatorcontrib><creatorcontrib>Ding, Liming</creatorcontrib><creatorcontrib>Feng, Jing</creatorcontrib><creatorcontrib>Yi, Jianhong</creatorcontrib><creatorcontrib>Chen, Jiangzhao</creatorcontrib><collection>CrossRef</collection><jtitle>ACS energy letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Dongmei</au><au>Ma, Danqing</au><au>Li, Ru</au><au>Liu, Baibai</au><au>Zhou, Qian</au><au>Yang, Hua</au><au>Lu, Shirong</au><au>Zhang, Zhengfu</au><au>Li, Caiju</au><au>Li, Xiong</au><au>Ding, Liming</au><au>Feng, Jing</au><au>Yi, Jianhong</au><au>Chen, Jiangzhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergistically Stabilizing Hole Transport Layer and Dual Interface Enables High-Performance Perovskite Solar Cells</atitle><jtitle>ACS energy letters</jtitle><addtitle>ACS Energy Lett</addtitle><date>2024-05-08</date><risdate>2024</risdate><volume>9</volume><issue>6</issue><spage>2615</spage><epage>2625</epage><pages>2615-2625</pages><issn>2380-8195</issn><eissn>2380-8195</eissn><abstract>The migration and diffusion of Li+ and halide ions, as well as the volatilization of 4-tert butylpyridine (tBP), seriously restrain the long-term operational stability of n-i-p perovskite solar cells (PSCs). Herein, we employ l-glutamic acid dibenzyl ester 4-toluenesulfonate (GADET) to simultaneously modulate the hole transport layer (HTL) and buried interface, which stabilizes the HTL and minimizes interfacial energy loss by immobilizing Li+, tBP, and halide ions and passivating dual interface defects. After forming Spiro-OMeTAD•+TFSI–, GADET impedes the Li+ ion diffusion through the ionic bond interaction of P-methylbenzenesulfonate anion and Li+, while the formation of the hydrogen bond of −NH3 + with tBP can suppress the volatilization of tBP. Moreover, the halide ion migration and interfacial trap-induced nonradiative recombination are inhibited via passivating undercoordinated Pb and halide vacancy defects based on multiple chemical bonds. The synergistically modified devices achieve a champion efficiency of 25.06% (certified PCE of 24.08%). Meanwhile, the stability of PSCs was significantly improved.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsenergylett.4c00816</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6437-9150</orcidid><orcidid>https://orcid.org/0000-0002-9066-7217</orcidid><orcidid>https://orcid.org/0000-0002-8932-6968</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2380-8195 |
ispartof | ACS energy letters, 2024-05, Vol.9 (6), p.2615-2625 |
issn | 2380-8195 2380-8195 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acsenergylett_4c00816 |
source | ACS Publications |
title | Synergistically Stabilizing Hole Transport Layer and Dual Interface Enables High-Performance Perovskite Solar Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T04%3A54%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergistically%20Stabilizing%20Hole%20Transport%20Layer%20and%20Dual%20Interface%20Enables%20High-Performance%20Perovskite%20Solar%20Cells&rft.jtitle=ACS%20energy%20letters&rft.au=He,%20Dongmei&rft.date=2024-05-08&rft.volume=9&rft.issue=6&rft.spage=2615&rft.epage=2625&rft.pages=2615-2625&rft.issn=2380-8195&rft.eissn=2380-8195&rft_id=info:doi/10.1021/acsenergylett.4c00816&rft_dat=%3Cacs_cross%3Ei97931573%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |