Synergistically Stabilizing Hole Transport Layer and Dual Interface Enables High-Performance Perovskite Solar Cells

The migration and diffusion of Li+ and halide ions, as well as the volatilization of 4-tert butylpyridine (tBP), seriously restrain the long-term operational stability of n-i-p perovskite solar cells (PSCs). Herein, we employ l-glutamic acid dibenzyl ester 4-toluenesulfonate (GADET) to simultaneousl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS energy letters 2024-05, Vol.9 (6), p.2615-2625
Hauptverfasser: He, Dongmei, Ma, Danqing, Li, Ru, Liu, Baibai, Zhou, Qian, Yang, Hua, Lu, Shirong, Zhang, Zhengfu, Li, Caiju, Li, Xiong, Ding, Liming, Feng, Jing, Yi, Jianhong, Chen, Jiangzhao
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2625
container_issue 6
container_start_page 2615
container_title ACS energy letters
container_volume 9
creator He, Dongmei
Ma, Danqing
Li, Ru
Liu, Baibai
Zhou, Qian
Yang, Hua
Lu, Shirong
Zhang, Zhengfu
Li, Caiju
Li, Xiong
Ding, Liming
Feng, Jing
Yi, Jianhong
Chen, Jiangzhao
description The migration and diffusion of Li+ and halide ions, as well as the volatilization of 4-tert butylpyridine (tBP), seriously restrain the long-term operational stability of n-i-p perovskite solar cells (PSCs). Herein, we employ l-glutamic acid dibenzyl ester 4-toluenesulfonate (GADET) to simultaneously modulate the hole transport layer (HTL) and buried interface, which stabilizes the HTL and minimizes interfacial energy loss by immobilizing Li+, tBP, and halide ions and passivating dual interface defects. After forming Spiro-OMeTAD•+TFSI–, GADET impedes the Li+ ion diffusion through the ionic bond interaction of P-methylbenzenesulfonate anion and Li+, while the formation of the hydrogen bond of −NH3 + with tBP can suppress the volatilization of tBP. Moreover, the halide ion migration and interfacial trap-induced nonradiative recombination are inhibited via passivating undercoordinated Pb and halide vacancy defects based on multiple chemical bonds. The synergistically modified devices achieve a champion efficiency of 25.06% (certified PCE of 24.08%). Meanwhile, the stability of PSCs was significantly improved.
doi_str_mv 10.1021/acsenergylett.4c00816
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsenergylett_4c00816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>i97931573</sourcerecordid><originalsourceid>FETCH-LOGICAL-a243t-dfb62e202d1df1630c16321665954ecd012110ac6dc499e42706cf1204f434e93</originalsourceid><addsrcrecordid>eNqFkNFKAzEQRYMoWGo_QcgPbJ1ks3H3UWq1hUKF1uclzc7W1DRbklRYv96U9kGfZGDmMpczDJeQewZjBpw9KB3Qod_2FmMcCw1QMnlFBjwvIStZVVz_0rdkFMIOAJgsi1QDElb9iTYhGq2s7ekqqo2x5tu4LZ11FunaKxcOnY90oXr0VLmGPh-VpXMX0bdKI506tbEY6MxsP7K3tOz8XrlkJN19hU8Tka46qzydoLXhjty0ygYcXeaQvL9M15NZtli-zidPi0xxkcesaTeSIwfesKZlMgedGmdSFlUhUDfAOGOgtGy0qCoU_BGkbhkH0YpcYJUPSXG-q30Xgse2PnizV76vGdSn8Oo_4dWX8BLHzlyy61139C59-Q_zA0tleWs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Synergistically Stabilizing Hole Transport Layer and Dual Interface Enables High-Performance Perovskite Solar Cells</title><source>ACS Publications</source><creator>He, Dongmei ; Ma, Danqing ; Li, Ru ; Liu, Baibai ; Zhou, Qian ; Yang, Hua ; Lu, Shirong ; Zhang, Zhengfu ; Li, Caiju ; Li, Xiong ; Ding, Liming ; Feng, Jing ; Yi, Jianhong ; Chen, Jiangzhao</creator><creatorcontrib>He, Dongmei ; Ma, Danqing ; Li, Ru ; Liu, Baibai ; Zhou, Qian ; Yang, Hua ; Lu, Shirong ; Zhang, Zhengfu ; Li, Caiju ; Li, Xiong ; Ding, Liming ; Feng, Jing ; Yi, Jianhong ; Chen, Jiangzhao</creatorcontrib><description>The migration and diffusion of Li+ and halide ions, as well as the volatilization of 4-tert butylpyridine (tBP), seriously restrain the long-term operational stability of n-i-p perovskite solar cells (PSCs). Herein, we employ l-glutamic acid dibenzyl ester 4-toluenesulfonate (GADET) to simultaneously modulate the hole transport layer (HTL) and buried interface, which stabilizes the HTL and minimizes interfacial energy loss by immobilizing Li+, tBP, and halide ions and passivating dual interface defects. After forming Spiro-OMeTAD•+TFSI–, GADET impedes the Li+ ion diffusion through the ionic bond interaction of P-methylbenzenesulfonate anion and Li+, while the formation of the hydrogen bond of −NH3 + with tBP can suppress the volatilization of tBP. Moreover, the halide ion migration and interfacial trap-induced nonradiative recombination are inhibited via passivating undercoordinated Pb and halide vacancy defects based on multiple chemical bonds. The synergistically modified devices achieve a champion efficiency of 25.06% (certified PCE of 24.08%). Meanwhile, the stability of PSCs was significantly improved.</description><identifier>ISSN: 2380-8195</identifier><identifier>EISSN: 2380-8195</identifier><identifier>DOI: 10.1021/acsenergylett.4c00816</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS energy letters, 2024-05, Vol.9 (6), p.2615-2625</ispartof><rights>2024 American Chemical Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a243t-dfb62e202d1df1630c16321665954ecd012110ac6dc499e42706cf1204f434e93</cites><orcidid>0000-0001-6437-9150 ; 0000-0002-9066-7217 ; 0000-0002-8932-6968</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsenergylett.4c00816$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsenergylett.4c00816$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2756,27067,27915,27916,56729,56779</link.rule.ids></links><search><creatorcontrib>He, Dongmei</creatorcontrib><creatorcontrib>Ma, Danqing</creatorcontrib><creatorcontrib>Li, Ru</creatorcontrib><creatorcontrib>Liu, Baibai</creatorcontrib><creatorcontrib>Zhou, Qian</creatorcontrib><creatorcontrib>Yang, Hua</creatorcontrib><creatorcontrib>Lu, Shirong</creatorcontrib><creatorcontrib>Zhang, Zhengfu</creatorcontrib><creatorcontrib>Li, Caiju</creatorcontrib><creatorcontrib>Li, Xiong</creatorcontrib><creatorcontrib>Ding, Liming</creatorcontrib><creatorcontrib>Feng, Jing</creatorcontrib><creatorcontrib>Yi, Jianhong</creatorcontrib><creatorcontrib>Chen, Jiangzhao</creatorcontrib><title>Synergistically Stabilizing Hole Transport Layer and Dual Interface Enables High-Performance Perovskite Solar Cells</title><title>ACS energy letters</title><addtitle>ACS Energy Lett</addtitle><description>The migration and diffusion of Li+ and halide ions, as well as the volatilization of 4-tert butylpyridine (tBP), seriously restrain the long-term operational stability of n-i-p perovskite solar cells (PSCs). Herein, we employ l-glutamic acid dibenzyl ester 4-toluenesulfonate (GADET) to simultaneously modulate the hole transport layer (HTL) and buried interface, which stabilizes the HTL and minimizes interfacial energy loss by immobilizing Li+, tBP, and halide ions and passivating dual interface defects. After forming Spiro-OMeTAD•+TFSI–, GADET impedes the Li+ ion diffusion through the ionic bond interaction of P-methylbenzenesulfonate anion and Li+, while the formation of the hydrogen bond of −NH3 + with tBP can suppress the volatilization of tBP. Moreover, the halide ion migration and interfacial trap-induced nonradiative recombination are inhibited via passivating undercoordinated Pb and halide vacancy defects based on multiple chemical bonds. The synergistically modified devices achieve a champion efficiency of 25.06% (certified PCE of 24.08%). Meanwhile, the stability of PSCs was significantly improved.</description><issn>2380-8195</issn><issn>2380-8195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkNFKAzEQRYMoWGo_QcgPbJ1ks3H3UWq1hUKF1uclzc7W1DRbklRYv96U9kGfZGDmMpczDJeQewZjBpw9KB3Qod_2FmMcCw1QMnlFBjwvIStZVVz_0rdkFMIOAJgsi1QDElb9iTYhGq2s7ekqqo2x5tu4LZ11FunaKxcOnY90oXr0VLmGPh-VpXMX0bdKI506tbEY6MxsP7K3tOz8XrlkJN19hU8Tka46qzydoLXhjty0ygYcXeaQvL9M15NZtli-zidPi0xxkcesaTeSIwfesKZlMgedGmdSFlUhUDfAOGOgtGy0qCoU_BGkbhkH0YpcYJUPSXG-q30Xgse2PnizV76vGdSn8Oo_4dWX8BLHzlyy61139C59-Q_zA0tleWs</recordid><startdate>20240508</startdate><enddate>20240508</enddate><creator>He, Dongmei</creator><creator>Ma, Danqing</creator><creator>Li, Ru</creator><creator>Liu, Baibai</creator><creator>Zhou, Qian</creator><creator>Yang, Hua</creator><creator>Lu, Shirong</creator><creator>Zhang, Zhengfu</creator><creator>Li, Caiju</creator><creator>Li, Xiong</creator><creator>Ding, Liming</creator><creator>Feng, Jing</creator><creator>Yi, Jianhong</creator><creator>Chen, Jiangzhao</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6437-9150</orcidid><orcidid>https://orcid.org/0000-0002-9066-7217</orcidid><orcidid>https://orcid.org/0000-0002-8932-6968</orcidid></search><sort><creationdate>20240508</creationdate><title>Synergistically Stabilizing Hole Transport Layer and Dual Interface Enables High-Performance Perovskite Solar Cells</title><author>He, Dongmei ; Ma, Danqing ; Li, Ru ; Liu, Baibai ; Zhou, Qian ; Yang, Hua ; Lu, Shirong ; Zhang, Zhengfu ; Li, Caiju ; Li, Xiong ; Ding, Liming ; Feng, Jing ; Yi, Jianhong ; Chen, Jiangzhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a243t-dfb62e202d1df1630c16321665954ecd012110ac6dc499e42706cf1204f434e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>He, Dongmei</creatorcontrib><creatorcontrib>Ma, Danqing</creatorcontrib><creatorcontrib>Li, Ru</creatorcontrib><creatorcontrib>Liu, Baibai</creatorcontrib><creatorcontrib>Zhou, Qian</creatorcontrib><creatorcontrib>Yang, Hua</creatorcontrib><creatorcontrib>Lu, Shirong</creatorcontrib><creatorcontrib>Zhang, Zhengfu</creatorcontrib><creatorcontrib>Li, Caiju</creatorcontrib><creatorcontrib>Li, Xiong</creatorcontrib><creatorcontrib>Ding, Liming</creatorcontrib><creatorcontrib>Feng, Jing</creatorcontrib><creatorcontrib>Yi, Jianhong</creatorcontrib><creatorcontrib>Chen, Jiangzhao</creatorcontrib><collection>CrossRef</collection><jtitle>ACS energy letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Dongmei</au><au>Ma, Danqing</au><au>Li, Ru</au><au>Liu, Baibai</au><au>Zhou, Qian</au><au>Yang, Hua</au><au>Lu, Shirong</au><au>Zhang, Zhengfu</au><au>Li, Caiju</au><au>Li, Xiong</au><au>Ding, Liming</au><au>Feng, Jing</au><au>Yi, Jianhong</au><au>Chen, Jiangzhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergistically Stabilizing Hole Transport Layer and Dual Interface Enables High-Performance Perovskite Solar Cells</atitle><jtitle>ACS energy letters</jtitle><addtitle>ACS Energy Lett</addtitle><date>2024-05-08</date><risdate>2024</risdate><volume>9</volume><issue>6</issue><spage>2615</spage><epage>2625</epage><pages>2615-2625</pages><issn>2380-8195</issn><eissn>2380-8195</eissn><abstract>The migration and diffusion of Li+ and halide ions, as well as the volatilization of 4-tert butylpyridine (tBP), seriously restrain the long-term operational stability of n-i-p perovskite solar cells (PSCs). Herein, we employ l-glutamic acid dibenzyl ester 4-toluenesulfonate (GADET) to simultaneously modulate the hole transport layer (HTL) and buried interface, which stabilizes the HTL and minimizes interfacial energy loss by immobilizing Li+, tBP, and halide ions and passivating dual interface defects. After forming Spiro-OMeTAD•+TFSI–, GADET impedes the Li+ ion diffusion through the ionic bond interaction of P-methylbenzenesulfonate anion and Li+, while the formation of the hydrogen bond of −NH3 + with tBP can suppress the volatilization of tBP. Moreover, the halide ion migration and interfacial trap-induced nonradiative recombination are inhibited via passivating undercoordinated Pb and halide vacancy defects based on multiple chemical bonds. The synergistically modified devices achieve a champion efficiency of 25.06% (certified PCE of 24.08%). Meanwhile, the stability of PSCs was significantly improved.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsenergylett.4c00816</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6437-9150</orcidid><orcidid>https://orcid.org/0000-0002-9066-7217</orcidid><orcidid>https://orcid.org/0000-0002-8932-6968</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2380-8195
ispartof ACS energy letters, 2024-05, Vol.9 (6), p.2615-2625
issn 2380-8195
2380-8195
language eng
recordid cdi_crossref_primary_10_1021_acsenergylett_4c00816
source ACS Publications
title Synergistically Stabilizing Hole Transport Layer and Dual Interface Enables High-Performance Perovskite Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T04%3A54%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergistically%20Stabilizing%20Hole%20Transport%20Layer%20and%20Dual%20Interface%20Enables%20High-Performance%20Perovskite%20Solar%20Cells&rft.jtitle=ACS%20energy%20letters&rft.au=He,%20Dongmei&rft.date=2024-05-08&rft.volume=9&rft.issue=6&rft.spage=2615&rft.epage=2625&rft.pages=2615-2625&rft.issn=2380-8195&rft.eissn=2380-8195&rft_id=info:doi/10.1021/acsenergylett.4c00816&rft_dat=%3Cacs_cross%3Ei97931573%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true