Decoupled Ionic and Electronic Pathways for Enhanced Osmotic Energy Harvesting

Methods of reducing nanofluids’ internal resistance by mixing conductive nanomaterials will negatively affect the nanochannel structures and ion transmissions. Herein, a layered-structured nanofluidic membrane that achieves ion transport in the internal cellulose nanochannels and realizes electron t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS energy letters 2024-05, Vol.9 (5), p.2092-2100
Hauptverfasser: Xie, Zhijiang, Xiang, Zhongrun, Fu, Xiaotong, Lin, Zewan, Jiao, Chenlu, Zheng, Ke, Yang, Mei, Qin, Xingzhen, Ye, Dongdong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2100
container_issue 5
container_start_page 2092
container_title ACS energy letters
container_volume 9
creator Xie, Zhijiang
Xiang, Zhongrun
Fu, Xiaotong
Lin, Zewan
Jiao, Chenlu
Zheng, Ke
Yang, Mei
Qin, Xingzhen
Ye, Dongdong
description Methods of reducing nanofluids’ internal resistance by mixing conductive nanomaterials will negatively affect the nanochannel structures and ion transmissions. Herein, a layered-structured nanofluidic membrane that achieves ion transport in the internal cellulose nanochannels and realizes electron transport in the external polyaniline network is developed. Results show that the ionic conductivity and resistivity of the layered membrane at low salt concentrations are 1.57 times higher and 0.99 times lower than those of the blend membrane, demonstrating the positive contribution of decoupled ionic and electronic pathways. Furthermore, the layered membrane attained an enhanced output power density of 11.7 W m–2 and maintained an output performance of up to 10.9 W m–2 after 16 days of operation under the neutral 50-fold salinity concentration gradient, which is higher than that of the commercial system (5.0 W m–2). Overall, this research expands the materials for osmotic energy–harvesting systems based on the design of ion and electron decoupling paths in biomass materials.
doi_str_mv 10.1021/acsenergylett.4c00320
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsenergylett_4c00320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c843229046</sourcerecordid><originalsourceid>FETCH-LOGICAL-a295t-7bb74097b5d5eb1bbb57b87ce917aeabd431995c2a105069cd4c321f1043baad3</originalsourceid><addsrcrecordid>eNqFkMFOwzAMhiMEEtPYIyDlBTrstlmbIxqFTZoYBzhXTppunbp0SjJQ356y7QAn5INt_f5t62PsHmGKEOMDaW-scZu-NSFMUw2QxHDFRnGSQ5SjFNe_6ls28X4HADjLxRAj9vpkdHc8tKbiy842mpOteNEaHdypfaOw_aLe87pzvLBbsnoYXft9Fwa1OF3mC3KfxofGbu7YTU2tN5NLHrOP5-J9vohW65fl_HEVUSxFiDKlshRkpkQljEKllMhUnmkjMSNDqkoTlFLomBAEzKSuUp3EWCOkiSKqkjET573add47U5cH1-zJ9SVC-cOl_MOlvHAZfHj2DXK5647ODl_-4_kGgPhsmg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Decoupled Ionic and Electronic Pathways for Enhanced Osmotic Energy Harvesting</title><source>ACS Publications</source><creator>Xie, Zhijiang ; Xiang, Zhongrun ; Fu, Xiaotong ; Lin, Zewan ; Jiao, Chenlu ; Zheng, Ke ; Yang, Mei ; Qin, Xingzhen ; Ye, Dongdong</creator><creatorcontrib>Xie, Zhijiang ; Xiang, Zhongrun ; Fu, Xiaotong ; Lin, Zewan ; Jiao, Chenlu ; Zheng, Ke ; Yang, Mei ; Qin, Xingzhen ; Ye, Dongdong</creatorcontrib><description>Methods of reducing nanofluids’ internal resistance by mixing conductive nanomaterials will negatively affect the nanochannel structures and ion transmissions. Herein, a layered-structured nanofluidic membrane that achieves ion transport in the internal cellulose nanochannels and realizes electron transport in the external polyaniline network is developed. Results show that the ionic conductivity and resistivity of the layered membrane at low salt concentrations are 1.57 times higher and 0.99 times lower than those of the blend membrane, demonstrating the positive contribution of decoupled ionic and electronic pathways. Furthermore, the layered membrane attained an enhanced output power density of 11.7 W m–2 and maintained an output performance of up to 10.9 W m–2 after 16 days of operation under the neutral 50-fold salinity concentration gradient, which is higher than that of the commercial system (5.0 W m–2). Overall, this research expands the materials for osmotic energy–harvesting systems based on the design of ion and electron decoupling paths in biomass materials.</description><identifier>ISSN: 2380-8195</identifier><identifier>EISSN: 2380-8195</identifier><identifier>DOI: 10.1021/acsenergylett.4c00320</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS energy letters, 2024-05, Vol.9 (5), p.2092-2100</ispartof><rights>2024 American Chemical Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a295t-7bb74097b5d5eb1bbb57b87ce917aeabd431995c2a105069cd4c321f1043baad3</citedby><cites>FETCH-LOGICAL-a295t-7bb74097b5d5eb1bbb57b87ce917aeabd431995c2a105069cd4c321f1043baad3</cites><orcidid>0000-0002-3377-0656</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsenergylett.4c00320$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsenergylett.4c00320$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Xie, Zhijiang</creatorcontrib><creatorcontrib>Xiang, Zhongrun</creatorcontrib><creatorcontrib>Fu, Xiaotong</creatorcontrib><creatorcontrib>Lin, Zewan</creatorcontrib><creatorcontrib>Jiao, Chenlu</creatorcontrib><creatorcontrib>Zheng, Ke</creatorcontrib><creatorcontrib>Yang, Mei</creatorcontrib><creatorcontrib>Qin, Xingzhen</creatorcontrib><creatorcontrib>Ye, Dongdong</creatorcontrib><title>Decoupled Ionic and Electronic Pathways for Enhanced Osmotic Energy Harvesting</title><title>ACS energy letters</title><addtitle>ACS Energy Lett</addtitle><description>Methods of reducing nanofluids’ internal resistance by mixing conductive nanomaterials will negatively affect the nanochannel structures and ion transmissions. Herein, a layered-structured nanofluidic membrane that achieves ion transport in the internal cellulose nanochannels and realizes electron transport in the external polyaniline network is developed. Results show that the ionic conductivity and resistivity of the layered membrane at low salt concentrations are 1.57 times higher and 0.99 times lower than those of the blend membrane, demonstrating the positive contribution of decoupled ionic and electronic pathways. Furthermore, the layered membrane attained an enhanced output power density of 11.7 W m–2 and maintained an output performance of up to 10.9 W m–2 after 16 days of operation under the neutral 50-fold salinity concentration gradient, which is higher than that of the commercial system (5.0 W m–2). Overall, this research expands the materials for osmotic energy–harvesting systems based on the design of ion and electron decoupling paths in biomass materials.</description><issn>2380-8195</issn><issn>2380-8195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkMFOwzAMhiMEEtPYIyDlBTrstlmbIxqFTZoYBzhXTppunbp0SjJQ356y7QAn5INt_f5t62PsHmGKEOMDaW-scZu-NSFMUw2QxHDFRnGSQ5SjFNe_6ls28X4HADjLxRAj9vpkdHc8tKbiy842mpOteNEaHdypfaOw_aLe87pzvLBbsnoYXft9Fwa1OF3mC3KfxofGbu7YTU2tN5NLHrOP5-J9vohW65fl_HEVUSxFiDKlshRkpkQljEKllMhUnmkjMSNDqkoTlFLomBAEzKSuUp3EWCOkiSKqkjET573add47U5cH1-zJ9SVC-cOl_MOlvHAZfHj2DXK5647ODl_-4_kGgPhsmg</recordid><startdate>20240510</startdate><enddate>20240510</enddate><creator>Xie, Zhijiang</creator><creator>Xiang, Zhongrun</creator><creator>Fu, Xiaotong</creator><creator>Lin, Zewan</creator><creator>Jiao, Chenlu</creator><creator>Zheng, Ke</creator><creator>Yang, Mei</creator><creator>Qin, Xingzhen</creator><creator>Ye, Dongdong</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3377-0656</orcidid></search><sort><creationdate>20240510</creationdate><title>Decoupled Ionic and Electronic Pathways for Enhanced Osmotic Energy Harvesting</title><author>Xie, Zhijiang ; Xiang, Zhongrun ; Fu, Xiaotong ; Lin, Zewan ; Jiao, Chenlu ; Zheng, Ke ; Yang, Mei ; Qin, Xingzhen ; Ye, Dongdong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a295t-7bb74097b5d5eb1bbb57b87ce917aeabd431995c2a105069cd4c321f1043baad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Xie, Zhijiang</creatorcontrib><creatorcontrib>Xiang, Zhongrun</creatorcontrib><creatorcontrib>Fu, Xiaotong</creatorcontrib><creatorcontrib>Lin, Zewan</creatorcontrib><creatorcontrib>Jiao, Chenlu</creatorcontrib><creatorcontrib>Zheng, Ke</creatorcontrib><creatorcontrib>Yang, Mei</creatorcontrib><creatorcontrib>Qin, Xingzhen</creatorcontrib><creatorcontrib>Ye, Dongdong</creatorcontrib><collection>CrossRef</collection><jtitle>ACS energy letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Zhijiang</au><au>Xiang, Zhongrun</au><au>Fu, Xiaotong</au><au>Lin, Zewan</au><au>Jiao, Chenlu</au><au>Zheng, Ke</au><au>Yang, Mei</au><au>Qin, Xingzhen</au><au>Ye, Dongdong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decoupled Ionic and Electronic Pathways for Enhanced Osmotic Energy Harvesting</atitle><jtitle>ACS energy letters</jtitle><addtitle>ACS Energy Lett</addtitle><date>2024-05-10</date><risdate>2024</risdate><volume>9</volume><issue>5</issue><spage>2092</spage><epage>2100</epage><pages>2092-2100</pages><issn>2380-8195</issn><eissn>2380-8195</eissn><abstract>Methods of reducing nanofluids’ internal resistance by mixing conductive nanomaterials will negatively affect the nanochannel structures and ion transmissions. Herein, a layered-structured nanofluidic membrane that achieves ion transport in the internal cellulose nanochannels and realizes electron transport in the external polyaniline network is developed. Results show that the ionic conductivity and resistivity of the layered membrane at low salt concentrations are 1.57 times higher and 0.99 times lower than those of the blend membrane, demonstrating the positive contribution of decoupled ionic and electronic pathways. Furthermore, the layered membrane attained an enhanced output power density of 11.7 W m–2 and maintained an output performance of up to 10.9 W m–2 after 16 days of operation under the neutral 50-fold salinity concentration gradient, which is higher than that of the commercial system (5.0 W m–2). Overall, this research expands the materials for osmotic energy–harvesting systems based on the design of ion and electron decoupling paths in biomass materials.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsenergylett.4c00320</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3377-0656</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2380-8195
ispartof ACS energy letters, 2024-05, Vol.9 (5), p.2092-2100
issn 2380-8195
2380-8195
language eng
recordid cdi_crossref_primary_10_1021_acsenergylett_4c00320
source ACS Publications
title Decoupled Ionic and Electronic Pathways for Enhanced Osmotic Energy Harvesting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A38%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decoupled%20Ionic%20and%20Electronic%20Pathways%20for%20Enhanced%20Osmotic%20Energy%20Harvesting&rft.jtitle=ACS%20energy%20letters&rft.au=Xie,%20Zhijiang&rft.date=2024-05-10&rft.volume=9&rft.issue=5&rft.spage=2092&rft.epage=2100&rft.pages=2092-2100&rft.issn=2380-8195&rft.eissn=2380-8195&rft_id=info:doi/10.1021/acsenergylett.4c00320&rft_dat=%3Cacs_cross%3Ec843229046%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true