A Multilevel Buffered Binder Network for High-Performance Silicon Anodes

Developing “ideal” binders to achieve ultrahigh area-capacity stable silicon (Si) anodes remains a significant challenge. Herein, a self-healing binder with a multilevel buffered structure is designed to alleviate the structural damage and performance degradation caused by extreme volume deformation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS energy letters 2022-10, Vol.7 (10), p.3572-3580
Hauptverfasser: Wan, Xin, Kang, Cong, Mu, Tiansheng, Zhu, Jiaming, Zuo, Pengjian, Du, Chunyu, Yin, Geping
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3580
container_issue 10
container_start_page 3572
container_title ACS energy letters
container_volume 7
creator Wan, Xin
Kang, Cong
Mu, Tiansheng
Zhu, Jiaming
Zuo, Pengjian
Du, Chunyu
Yin, Geping
description Developing “ideal” binders to achieve ultrahigh area-capacity stable silicon (Si) anodes remains a significant challenge. Herein, a self-healing binder with a multilevel buffered structure is designed to alleviate the structural damage and performance degradation caused by extreme volume deformation of Si. In this multilevel configuration, employing the coexistence strategy of dynamic supramolecular interactions and rigid covalent bonds, the dopamine-grafted poly­(acrylic acid) (PAA-DA) possesses abundant hydrogen bonds and strong viscoelasticity, which facilitates the dynamic reconstruction of the entire network. Moreover, the hydroxyl groups on the polyethylene glycol (PVA) form a strong covalent bond network with the carboxyl groups in PAA-DA under thermal polymerization conditions to ensure the integrity of the electrode structure. At 4 A g–1, the resulting Si electrode retains 1974.1 mAh g–1 after 500 cycles. This binder design strategy with dynamic repair and stable network structure gives specific inspiration for developing high-energy-density batteries.
doi_str_mv 10.1021/acsenergylett.2c02030
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsenergylett_2c02030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b146338598</sourcerecordid><originalsourceid>FETCH-LOGICAL-a295t-301e7be3d78ea521fd8ed7fd92ba28a0a11411bafead598e2397620751b5a8083</originalsourceid><addsrcrecordid>eNqFkN1Kw0AQRhdRsNQ-grAvkDqzcZvNZVrUFOoPqNfLJjtbU9Os7KZK395Ie6FXMhfzwccZhsPYJcIUQeCVqSN1FNb7lvp-KmoQkMIJG4lUQaIwl6e_8jmbxLgBAJwpOcyIlQW_37V909IntXy-c44CWT5vOkuBP1D_5cM7dz7wslm_JU8Uhrw1XU38uWmb2ne86LyleMHOnGkjTY57zF5vb14WZbJ6vFsuilViRC77JAWkrKLUZoqMFOisIps5m4vKCGXAIF4jVsaRsTJXJNI8mwnIJFbSKFDpmMnD3Tr4GAM5_RGarQl7jaB_jOg_RvTRyMDhgRtqvfG70A1f_sN8AxkwaZ8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Multilevel Buffered Binder Network for High-Performance Silicon Anodes</title><source>ACS Publications</source><creator>Wan, Xin ; Kang, Cong ; Mu, Tiansheng ; Zhu, Jiaming ; Zuo, Pengjian ; Du, Chunyu ; Yin, Geping</creator><creatorcontrib>Wan, Xin ; Kang, Cong ; Mu, Tiansheng ; Zhu, Jiaming ; Zuo, Pengjian ; Du, Chunyu ; Yin, Geping</creatorcontrib><description>Developing “ideal” binders to achieve ultrahigh area-capacity stable silicon (Si) anodes remains a significant challenge. Herein, a self-healing binder with a multilevel buffered structure is designed to alleviate the structural damage and performance degradation caused by extreme volume deformation of Si. In this multilevel configuration, employing the coexistence strategy of dynamic supramolecular interactions and rigid covalent bonds, the dopamine-grafted poly­(acrylic acid) (PAA-DA) possesses abundant hydrogen bonds and strong viscoelasticity, which facilitates the dynamic reconstruction of the entire network. Moreover, the hydroxyl groups on the polyethylene glycol (PVA) form a strong covalent bond network with the carboxyl groups in PAA-DA under thermal polymerization conditions to ensure the integrity of the electrode structure. At 4 A g–1, the resulting Si electrode retains 1974.1 mAh g–1 after 500 cycles. This binder design strategy with dynamic repair and stable network structure gives specific inspiration for developing high-energy-density batteries.</description><identifier>ISSN: 2380-8195</identifier><identifier>EISSN: 2380-8195</identifier><identifier>DOI: 10.1021/acsenergylett.2c02030</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS energy letters, 2022-10, Vol.7 (10), p.3572-3580</ispartof><rights>2022 American Chemical Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a295t-301e7be3d78ea521fd8ed7fd92ba28a0a11411bafead598e2397620751b5a8083</citedby><cites>FETCH-LOGICAL-a295t-301e7be3d78ea521fd8ed7fd92ba28a0a11411bafead598e2397620751b5a8083</cites><orcidid>0000-0001-8777-5105 ; 0000-0003-0547-7724 ; 0000-0002-8804-6550</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsenergylett.2c02030$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsenergylett.2c02030$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Wan, Xin</creatorcontrib><creatorcontrib>Kang, Cong</creatorcontrib><creatorcontrib>Mu, Tiansheng</creatorcontrib><creatorcontrib>Zhu, Jiaming</creatorcontrib><creatorcontrib>Zuo, Pengjian</creatorcontrib><creatorcontrib>Du, Chunyu</creatorcontrib><creatorcontrib>Yin, Geping</creatorcontrib><title>A Multilevel Buffered Binder Network for High-Performance Silicon Anodes</title><title>ACS energy letters</title><addtitle>ACS Energy Lett</addtitle><description>Developing “ideal” binders to achieve ultrahigh area-capacity stable silicon (Si) anodes remains a significant challenge. Herein, a self-healing binder with a multilevel buffered structure is designed to alleviate the structural damage and performance degradation caused by extreme volume deformation of Si. In this multilevel configuration, employing the coexistence strategy of dynamic supramolecular interactions and rigid covalent bonds, the dopamine-grafted poly­(acrylic acid) (PAA-DA) possesses abundant hydrogen bonds and strong viscoelasticity, which facilitates the dynamic reconstruction of the entire network. Moreover, the hydroxyl groups on the polyethylene glycol (PVA) form a strong covalent bond network with the carboxyl groups in PAA-DA under thermal polymerization conditions to ensure the integrity of the electrode structure. At 4 A g–1, the resulting Si electrode retains 1974.1 mAh g–1 after 500 cycles. This binder design strategy with dynamic repair and stable network structure gives specific inspiration for developing high-energy-density batteries.</description><issn>2380-8195</issn><issn>2380-8195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkN1Kw0AQRhdRsNQ-grAvkDqzcZvNZVrUFOoPqNfLJjtbU9Os7KZK395Ie6FXMhfzwccZhsPYJcIUQeCVqSN1FNb7lvp-KmoQkMIJG4lUQaIwl6e_8jmbxLgBAJwpOcyIlQW_37V909IntXy-c44CWT5vOkuBP1D_5cM7dz7wslm_JU8Uhrw1XU38uWmb2ne86LyleMHOnGkjTY57zF5vb14WZbJ6vFsuilViRC77JAWkrKLUZoqMFOisIps5m4vKCGXAIF4jVsaRsTJXJNI8mwnIJFbSKFDpmMnD3Tr4GAM5_RGarQl7jaB_jOg_RvTRyMDhgRtqvfG70A1f_sN8AxkwaZ8</recordid><startdate>20221014</startdate><enddate>20221014</enddate><creator>Wan, Xin</creator><creator>Kang, Cong</creator><creator>Mu, Tiansheng</creator><creator>Zhu, Jiaming</creator><creator>Zuo, Pengjian</creator><creator>Du, Chunyu</creator><creator>Yin, Geping</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8777-5105</orcidid><orcidid>https://orcid.org/0000-0003-0547-7724</orcidid><orcidid>https://orcid.org/0000-0002-8804-6550</orcidid></search><sort><creationdate>20221014</creationdate><title>A Multilevel Buffered Binder Network for High-Performance Silicon Anodes</title><author>Wan, Xin ; Kang, Cong ; Mu, Tiansheng ; Zhu, Jiaming ; Zuo, Pengjian ; Du, Chunyu ; Yin, Geping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a295t-301e7be3d78ea521fd8ed7fd92ba28a0a11411bafead598e2397620751b5a8083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Wan, Xin</creatorcontrib><creatorcontrib>Kang, Cong</creatorcontrib><creatorcontrib>Mu, Tiansheng</creatorcontrib><creatorcontrib>Zhu, Jiaming</creatorcontrib><creatorcontrib>Zuo, Pengjian</creatorcontrib><creatorcontrib>Du, Chunyu</creatorcontrib><creatorcontrib>Yin, Geping</creatorcontrib><collection>CrossRef</collection><jtitle>ACS energy letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wan, Xin</au><au>Kang, Cong</au><au>Mu, Tiansheng</au><au>Zhu, Jiaming</au><au>Zuo, Pengjian</au><au>Du, Chunyu</au><au>Yin, Geping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multilevel Buffered Binder Network for High-Performance Silicon Anodes</atitle><jtitle>ACS energy letters</jtitle><addtitle>ACS Energy Lett</addtitle><date>2022-10-14</date><risdate>2022</risdate><volume>7</volume><issue>10</issue><spage>3572</spage><epage>3580</epage><pages>3572-3580</pages><issn>2380-8195</issn><eissn>2380-8195</eissn><abstract>Developing “ideal” binders to achieve ultrahigh area-capacity stable silicon (Si) anodes remains a significant challenge. Herein, a self-healing binder with a multilevel buffered structure is designed to alleviate the structural damage and performance degradation caused by extreme volume deformation of Si. In this multilevel configuration, employing the coexistence strategy of dynamic supramolecular interactions and rigid covalent bonds, the dopamine-grafted poly­(acrylic acid) (PAA-DA) possesses abundant hydrogen bonds and strong viscoelasticity, which facilitates the dynamic reconstruction of the entire network. Moreover, the hydroxyl groups on the polyethylene glycol (PVA) form a strong covalent bond network with the carboxyl groups in PAA-DA under thermal polymerization conditions to ensure the integrity of the electrode structure. At 4 A g–1, the resulting Si electrode retains 1974.1 mAh g–1 after 500 cycles. This binder design strategy with dynamic repair and stable network structure gives specific inspiration for developing high-energy-density batteries.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsenergylett.2c02030</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8777-5105</orcidid><orcidid>https://orcid.org/0000-0003-0547-7724</orcidid><orcidid>https://orcid.org/0000-0002-8804-6550</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2380-8195
ispartof ACS energy letters, 2022-10, Vol.7 (10), p.3572-3580
issn 2380-8195
2380-8195
language eng
recordid cdi_crossref_primary_10_1021_acsenergylett_2c02030
source ACS Publications
title A Multilevel Buffered Binder Network for High-Performance Silicon Anodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T15%3A53%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multilevel%20Buffered%20Binder%20Network%20for%20High-Performance%20Silicon%20Anodes&rft.jtitle=ACS%20energy%20letters&rft.au=Wan,%20Xin&rft.date=2022-10-14&rft.volume=7&rft.issue=10&rft.spage=3572&rft.epage=3580&rft.pages=3572-3580&rft.issn=2380-8195&rft.eissn=2380-8195&rft_id=info:doi/10.1021/acsenergylett.2c02030&rft_dat=%3Cacs_cross%3Eb146338598%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true