Band Edge Tuning of Two-Dimensional Ruddlesden–Popper Perovskites by A Cation Size Revealed through Nanoplates

Current understanding of the effects of various A-site cations on the photophysical properties of halide perovskites (APbI3) is limited by the compositional tunability. Here we report the synthesis and characterization of colloidal nanoplates of a series of 2D Ruddlesden–Popper (RP) perovskites (HA)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS energy letters 2020-05, Vol.5 (5), p.1430-1437
Hauptverfasser: Hautzinger, Matthew P, Pan, Dongxu, Pigg, Alexis K, Fu, Yongping, Morrow, Darien J, Leng, Meiying, Kuo, Ming-Yu, Spitha, Natalia, Kohler, Daniel D, Wright, John C, Jin, Song
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1437
container_issue 5
container_start_page 1430
container_title ACS energy letters
container_volume 5
creator Hautzinger, Matthew P
Pan, Dongxu
Pigg, Alexis K
Fu, Yongping
Morrow, Darien J
Leng, Meiying
Kuo, Ming-Yu
Spitha, Natalia
Kohler, Daniel D
Wright, John C
Jin, Song
description Current understanding of the effects of various A-site cations on the photophysical properties of halide perovskites (APbI3) is limited by the compositional tunability. Here we report the synthesis and characterization of colloidal nanoplates of a series of 2D Ruddlesden–Popper (RP) perovskites (HA)2(A)­Pb2I7 (HA = n-hexylammonium) with seven small and large A-site cations to reveal the size effects of such A cations. Absorbance and photoluminescence (PL) measurements show a clear parabolic trend of the optical band gap versus the A cation size, with methylammonium and formamidinium near the bottom. This band gap shifting is attributed to the changing chemical pressure inside the A-site cavity templating the Pb–I framework. PL quantum yield and time-resolved PL measurements show the effect of A cation size on the PL efficiencies and carrier lifetimes. This fundamental investigation can inform the choices of A-site cations that can be incorporated into halide perovskite materials for optoelectronic applications.
doi_str_mv 10.1021/acsenergylett.0c00450
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsenergylett_0c00450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a052434459</sourcerecordid><originalsourceid>FETCH-LOGICAL-a295t-9deb9d88a3e736a989a30cb0580b33503888a867ee428752662bc1e11e836edb3</originalsourceid><addsrcrecordid>eNqFkE1OwzAQRi0EElXpEZB8gZRxXKfOspTyI1VQlbKOnHiapqR2ZCdFYcUduCEnIahdwArNYkb6vjeLR8glgyGDkF2pzKNBl7cl1vUQMoCRgBPSC7mEQLJYnP66z8nA-y0AsEiKbnqkulZG05nOka4aU5ic2jVdvdngptih8YU1qqTLRusSvUbz9fG5sFWFji7Q2b1_LWr0NG3phE5V3bXpc_GOdIl7VCVqWm-cbfINfVTGVqXqyhfkbK1Kj4Pj7pOX29lqeh_Mn-4eppN5oMJY1EGsMY21lIrjmEcqlrHikKUgJKScC-Cyy2Q0RhyFcizCKArTjCFjKHmEOuV9Ig5_M2e9d7hOKlfslGsTBsmPueSPueRoruPYgeviZGsb1wnw_zDf9gd47g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Band Edge Tuning of Two-Dimensional Ruddlesden–Popper Perovskites by A Cation Size Revealed through Nanoplates</title><source>American Chemical Society Journals</source><creator>Hautzinger, Matthew P ; Pan, Dongxu ; Pigg, Alexis K ; Fu, Yongping ; Morrow, Darien J ; Leng, Meiying ; Kuo, Ming-Yu ; Spitha, Natalia ; Kohler, Daniel D ; Wright, John C ; Jin, Song</creator><creatorcontrib>Hautzinger, Matthew P ; Pan, Dongxu ; Pigg, Alexis K ; Fu, Yongping ; Morrow, Darien J ; Leng, Meiying ; Kuo, Ming-Yu ; Spitha, Natalia ; Kohler, Daniel D ; Wright, John C ; Jin, Song</creatorcontrib><description>Current understanding of the effects of various A-site cations on the photophysical properties of halide perovskites (APbI3) is limited by the compositional tunability. Here we report the synthesis and characterization of colloidal nanoplates of a series of 2D Ruddlesden–Popper (RP) perovskites (HA)2(A)­Pb2I7 (HA = n-hexylammonium) with seven small and large A-site cations to reveal the size effects of such A cations. Absorbance and photoluminescence (PL) measurements show a clear parabolic trend of the optical band gap versus the A cation size, with methylammonium and formamidinium near the bottom. This band gap shifting is attributed to the changing chemical pressure inside the A-site cavity templating the Pb–I framework. PL quantum yield and time-resolved PL measurements show the effect of A cation size on the PL efficiencies and carrier lifetimes. This fundamental investigation can inform the choices of A-site cations that can be incorporated into halide perovskite materials for optoelectronic applications.</description><identifier>ISSN: 2380-8195</identifier><identifier>EISSN: 2380-8195</identifier><identifier>DOI: 10.1021/acsenergylett.0c00450</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS energy letters, 2020-05, Vol.5 (5), p.1430-1437</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a295t-9deb9d88a3e736a989a30cb0580b33503888a867ee428752662bc1e11e836edb3</citedby><cites>FETCH-LOGICAL-a295t-9deb9d88a3e736a989a30cb0580b33503888a867ee428752662bc1e11e836edb3</cites><orcidid>0000-0002-6926-1837 ; 0000-0001-8693-7010 ; 0000-0002-4764-3076 ; 0000-0003-4602-2961 ; 0000-0002-8922-8049</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsenergylett.0c00450$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsenergylett.0c00450$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Hautzinger, Matthew P</creatorcontrib><creatorcontrib>Pan, Dongxu</creatorcontrib><creatorcontrib>Pigg, Alexis K</creatorcontrib><creatorcontrib>Fu, Yongping</creatorcontrib><creatorcontrib>Morrow, Darien J</creatorcontrib><creatorcontrib>Leng, Meiying</creatorcontrib><creatorcontrib>Kuo, Ming-Yu</creatorcontrib><creatorcontrib>Spitha, Natalia</creatorcontrib><creatorcontrib>Kohler, Daniel D</creatorcontrib><creatorcontrib>Wright, John C</creatorcontrib><creatorcontrib>Jin, Song</creatorcontrib><title>Band Edge Tuning of Two-Dimensional Ruddlesden–Popper Perovskites by A Cation Size Revealed through Nanoplates</title><title>ACS energy letters</title><addtitle>ACS Energy Lett</addtitle><description>Current understanding of the effects of various A-site cations on the photophysical properties of halide perovskites (APbI3) is limited by the compositional tunability. Here we report the synthesis and characterization of colloidal nanoplates of a series of 2D Ruddlesden–Popper (RP) perovskites (HA)2(A)­Pb2I7 (HA = n-hexylammonium) with seven small and large A-site cations to reveal the size effects of such A cations. Absorbance and photoluminescence (PL) measurements show a clear parabolic trend of the optical band gap versus the A cation size, with methylammonium and formamidinium near the bottom. This band gap shifting is attributed to the changing chemical pressure inside the A-site cavity templating the Pb–I framework. PL quantum yield and time-resolved PL measurements show the effect of A cation size on the PL efficiencies and carrier lifetimes. This fundamental investigation can inform the choices of A-site cations that can be incorporated into halide perovskite materials for optoelectronic applications.</description><issn>2380-8195</issn><issn>2380-8195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE1OwzAQRi0EElXpEZB8gZRxXKfOspTyI1VQlbKOnHiapqR2ZCdFYcUduCEnIahdwArNYkb6vjeLR8glgyGDkF2pzKNBl7cl1vUQMoCRgBPSC7mEQLJYnP66z8nA-y0AsEiKbnqkulZG05nOka4aU5ic2jVdvdngptih8YU1qqTLRusSvUbz9fG5sFWFji7Q2b1_LWr0NG3phE5V3bXpc_GOdIl7VCVqWm-cbfINfVTGVqXqyhfkbK1Kj4Pj7pOX29lqeh_Mn-4eppN5oMJY1EGsMY21lIrjmEcqlrHikKUgJKScC-Cyy2Q0RhyFcizCKArTjCFjKHmEOuV9Ig5_M2e9d7hOKlfslGsTBsmPueSPueRoruPYgeviZGsb1wnw_zDf9gd47g</recordid><startdate>20200508</startdate><enddate>20200508</enddate><creator>Hautzinger, Matthew P</creator><creator>Pan, Dongxu</creator><creator>Pigg, Alexis K</creator><creator>Fu, Yongping</creator><creator>Morrow, Darien J</creator><creator>Leng, Meiying</creator><creator>Kuo, Ming-Yu</creator><creator>Spitha, Natalia</creator><creator>Kohler, Daniel D</creator><creator>Wright, John C</creator><creator>Jin, Song</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6926-1837</orcidid><orcidid>https://orcid.org/0000-0001-8693-7010</orcidid><orcidid>https://orcid.org/0000-0002-4764-3076</orcidid><orcidid>https://orcid.org/0000-0003-4602-2961</orcidid><orcidid>https://orcid.org/0000-0002-8922-8049</orcidid></search><sort><creationdate>20200508</creationdate><title>Band Edge Tuning of Two-Dimensional Ruddlesden–Popper Perovskites by A Cation Size Revealed through Nanoplates</title><author>Hautzinger, Matthew P ; Pan, Dongxu ; Pigg, Alexis K ; Fu, Yongping ; Morrow, Darien J ; Leng, Meiying ; Kuo, Ming-Yu ; Spitha, Natalia ; Kohler, Daniel D ; Wright, John C ; Jin, Song</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a295t-9deb9d88a3e736a989a30cb0580b33503888a867ee428752662bc1e11e836edb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Hautzinger, Matthew P</creatorcontrib><creatorcontrib>Pan, Dongxu</creatorcontrib><creatorcontrib>Pigg, Alexis K</creatorcontrib><creatorcontrib>Fu, Yongping</creatorcontrib><creatorcontrib>Morrow, Darien J</creatorcontrib><creatorcontrib>Leng, Meiying</creatorcontrib><creatorcontrib>Kuo, Ming-Yu</creatorcontrib><creatorcontrib>Spitha, Natalia</creatorcontrib><creatorcontrib>Kohler, Daniel D</creatorcontrib><creatorcontrib>Wright, John C</creatorcontrib><creatorcontrib>Jin, Song</creatorcontrib><collection>CrossRef</collection><jtitle>ACS energy letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hautzinger, Matthew P</au><au>Pan, Dongxu</au><au>Pigg, Alexis K</au><au>Fu, Yongping</au><au>Morrow, Darien J</au><au>Leng, Meiying</au><au>Kuo, Ming-Yu</au><au>Spitha, Natalia</au><au>Kohler, Daniel D</au><au>Wright, John C</au><au>Jin, Song</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Band Edge Tuning of Two-Dimensional Ruddlesden–Popper Perovskites by A Cation Size Revealed through Nanoplates</atitle><jtitle>ACS energy letters</jtitle><addtitle>ACS Energy Lett</addtitle><date>2020-05-08</date><risdate>2020</risdate><volume>5</volume><issue>5</issue><spage>1430</spage><epage>1437</epage><pages>1430-1437</pages><issn>2380-8195</issn><eissn>2380-8195</eissn><abstract>Current understanding of the effects of various A-site cations on the photophysical properties of halide perovskites (APbI3) is limited by the compositional tunability. Here we report the synthesis and characterization of colloidal nanoplates of a series of 2D Ruddlesden–Popper (RP) perovskites (HA)2(A)­Pb2I7 (HA = n-hexylammonium) with seven small and large A-site cations to reveal the size effects of such A cations. Absorbance and photoluminescence (PL) measurements show a clear parabolic trend of the optical band gap versus the A cation size, with methylammonium and formamidinium near the bottom. This band gap shifting is attributed to the changing chemical pressure inside the A-site cavity templating the Pb–I framework. PL quantum yield and time-resolved PL measurements show the effect of A cation size on the PL efficiencies and carrier lifetimes. This fundamental investigation can inform the choices of A-site cations that can be incorporated into halide perovskite materials for optoelectronic applications.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsenergylett.0c00450</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6926-1837</orcidid><orcidid>https://orcid.org/0000-0001-8693-7010</orcidid><orcidid>https://orcid.org/0000-0002-4764-3076</orcidid><orcidid>https://orcid.org/0000-0003-4602-2961</orcidid><orcidid>https://orcid.org/0000-0002-8922-8049</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2380-8195
ispartof ACS energy letters, 2020-05, Vol.5 (5), p.1430-1437
issn 2380-8195
2380-8195
language eng
recordid cdi_crossref_primary_10_1021_acsenergylett_0c00450
source American Chemical Society Journals
title Band Edge Tuning of Two-Dimensional Ruddlesden–Popper Perovskites by A Cation Size Revealed through Nanoplates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A16%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Band%20Edge%20Tuning%20of%20Two-Dimensional%20Ruddlesden%E2%80%93Popper%20Perovskites%20by%20A%20Cation%20Size%20Revealed%20through%20Nanoplates&rft.jtitle=ACS%20energy%20letters&rft.au=Hautzinger,%20Matthew%20P&rft.date=2020-05-08&rft.volume=5&rft.issue=5&rft.spage=1430&rft.epage=1437&rft.pages=1430-1437&rft.issn=2380-8195&rft.eissn=2380-8195&rft_id=info:doi/10.1021/acsenergylett.0c00450&rft_dat=%3Cacs_cross%3Ea052434459%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true