Phase-Transition Dynamics of Forsterite from Glass to Liquid States

To investigate the transition mechanisms of forsterite from a glassy to molten state, we performed molecular dynamics calculations in a temperature range of 10–3000 K. The results show that the thermal expansion coefficient changes remarkably at around 1567 K during heating from 10 K. This temperatu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS earth and space chemistry 2020-03, Vol.4 (3), p.328-334
Hauptverfasser: Nishizawa, Junya, Ikeda-Fukazawa, Tomoko
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 334
container_issue 3
container_start_page 328
container_title ACS earth and space chemistry
container_volume 4
creator Nishizawa, Junya
Ikeda-Fukazawa, Tomoko
description To investigate the transition mechanisms of forsterite from a glassy to molten state, we performed molecular dynamics calculations in a temperature range of 10–3000 K. The results show that the thermal expansion coefficient changes remarkably at around 1567 K during heating from 10 K. This temperature is the transition point from glassy to liquid states. To investigate the mechanisms of the phase transition, shear viscosity and self-diffusion processes of atoms were analyzed. The result shows that the increasing rates of diffusion coefficients with heating change at around 1300 and 1800 K. This suggests that a diffusion mechanism changes in the supercooled liquid state. From the observation of the trajectories of atoms, it was found that atoms migrate through discontinuous hopping in the supercooled liquid matrices. The hopping probability of atoms, which is located in positions with higher Si and lower Mg densities, is higher than the average probability at low temperatures. The result indicates a dynamical correlation between the hops of atoms in the supercooled liquid state, while Brownian motion is the main mechanism of diffusion in the liquid phase at temperatures above the melting point. The mechanism of the glass–liquid transition of forsterite is important for understanding the evolution process of minerals in space.
doi_str_mv 10.1021/acsearthspacechem.9b00238
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsearthspacechem_9b00238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d63207936</sourcerecordid><originalsourceid>FETCH-LOGICAL-a373t-624e6129b7d623dc4c70cc78226e72a329625eaa352c45745d76a12d8d71fb113</originalsourceid><addsrcrecordid>eNqNkEFOwzAQRS0EElXpHcwBUuxxEidLFGhBqgQSZR1NHEdx1cTF4y56e4LaBRIbVvMX876-HmP3UiylAPmAhiyG2NMBjTW9HZZlIwSo4orNINWQqDSD61_5li2IdkIIWSpViGLGqvceySbbgCO56PzIn04jDs4Q9x1f-UDRBhct74If-HqPRDx6vnFfR9fyj4jR0h276XBPdnG5c_a5et5WL8nmbf1aPW4SVFrFJIfU5hLKRrc5qNakRgtjdAGQWw2ooMwhs4gqA5NmOs1anaOEtmi17Bop1ZyV514TPFGwXX0IbsBwqqWof4TUf4TUFyETm53Z6aXe-WMYp6X_4L4BA4ZrzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Phase-Transition Dynamics of Forsterite from Glass to Liquid States</title><source>American Chemical Society Journals</source><creator>Nishizawa, Junya ; Ikeda-Fukazawa, Tomoko</creator><creatorcontrib>Nishizawa, Junya ; Ikeda-Fukazawa, Tomoko</creatorcontrib><description>To investigate the transition mechanisms of forsterite from a glassy to molten state, we performed molecular dynamics calculations in a temperature range of 10–3000 K. The results show that the thermal expansion coefficient changes remarkably at around 1567 K during heating from 10 K. This temperature is the transition point from glassy to liquid states. To investigate the mechanisms of the phase transition, shear viscosity and self-diffusion processes of atoms were analyzed. The result shows that the increasing rates of diffusion coefficients with heating change at around 1300 and 1800 K. This suggests that a diffusion mechanism changes in the supercooled liquid state. From the observation of the trajectories of atoms, it was found that atoms migrate through discontinuous hopping in the supercooled liquid matrices. The hopping probability of atoms, which is located in positions with higher Si and lower Mg densities, is higher than the average probability at low temperatures. The result indicates a dynamical correlation between the hops of atoms in the supercooled liquid state, while Brownian motion is the main mechanism of diffusion in the liquid phase at temperatures above the melting point. The mechanism of the glass–liquid transition of forsterite is important for understanding the evolution process of minerals in space.</description><identifier>ISSN: 2472-3452</identifier><identifier>EISSN: 2472-3452</identifier><identifier>DOI: 10.1021/acsearthspacechem.9b00238</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS earth and space chemistry, 2020-03, Vol.4 (3), p.328-334</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a373t-624e6129b7d623dc4c70cc78226e72a329625eaa352c45745d76a12d8d71fb113</citedby><cites>FETCH-LOGICAL-a373t-624e6129b7d623dc4c70cc78226e72a329625eaa352c45745d76a12d8d71fb113</cites><orcidid>0000-0002-5265-4706</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsearthspacechem.9b00238$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsearthspacechem.9b00238$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Nishizawa, Junya</creatorcontrib><creatorcontrib>Ikeda-Fukazawa, Tomoko</creatorcontrib><title>Phase-Transition Dynamics of Forsterite from Glass to Liquid States</title><title>ACS earth and space chemistry</title><addtitle>ACS Earth Space Chem</addtitle><description>To investigate the transition mechanisms of forsterite from a glassy to molten state, we performed molecular dynamics calculations in a temperature range of 10–3000 K. The results show that the thermal expansion coefficient changes remarkably at around 1567 K during heating from 10 K. This temperature is the transition point from glassy to liquid states. To investigate the mechanisms of the phase transition, shear viscosity and self-diffusion processes of atoms were analyzed. The result shows that the increasing rates of diffusion coefficients with heating change at around 1300 and 1800 K. This suggests that a diffusion mechanism changes in the supercooled liquid state. From the observation of the trajectories of atoms, it was found that atoms migrate through discontinuous hopping in the supercooled liquid matrices. The hopping probability of atoms, which is located in positions with higher Si and lower Mg densities, is higher than the average probability at low temperatures. The result indicates a dynamical correlation between the hops of atoms in the supercooled liquid state, while Brownian motion is the main mechanism of diffusion in the liquid phase at temperatures above the melting point. The mechanism of the glass–liquid transition of forsterite is important for understanding the evolution process of minerals in space.</description><issn>2472-3452</issn><issn>2472-3452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkEFOwzAQRS0EElXpHcwBUuxxEidLFGhBqgQSZR1NHEdx1cTF4y56e4LaBRIbVvMX876-HmP3UiylAPmAhiyG2NMBjTW9HZZlIwSo4orNINWQqDSD61_5li2IdkIIWSpViGLGqvceySbbgCO56PzIn04jDs4Q9x1f-UDRBhct74If-HqPRDx6vnFfR9fyj4jR0h276XBPdnG5c_a5et5WL8nmbf1aPW4SVFrFJIfU5hLKRrc5qNakRgtjdAGQWw2ooMwhs4gqA5NmOs1anaOEtmi17Bop1ZyV514TPFGwXX0IbsBwqqWof4TUf4TUFyETm53Z6aXe-WMYp6X_4L4BA4ZrzA</recordid><startdate>20200319</startdate><enddate>20200319</enddate><creator>Nishizawa, Junya</creator><creator>Ikeda-Fukazawa, Tomoko</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5265-4706</orcidid></search><sort><creationdate>20200319</creationdate><title>Phase-Transition Dynamics of Forsterite from Glass to Liquid States</title><author>Nishizawa, Junya ; Ikeda-Fukazawa, Tomoko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a373t-624e6129b7d623dc4c70cc78226e72a329625eaa352c45745d76a12d8d71fb113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nishizawa, Junya</creatorcontrib><creatorcontrib>Ikeda-Fukazawa, Tomoko</creatorcontrib><collection>CrossRef</collection><jtitle>ACS earth and space chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nishizawa, Junya</au><au>Ikeda-Fukazawa, Tomoko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase-Transition Dynamics of Forsterite from Glass to Liquid States</atitle><jtitle>ACS earth and space chemistry</jtitle><addtitle>ACS Earth Space Chem</addtitle><date>2020-03-19</date><risdate>2020</risdate><volume>4</volume><issue>3</issue><spage>328</spage><epage>334</epage><pages>328-334</pages><issn>2472-3452</issn><eissn>2472-3452</eissn><abstract>To investigate the transition mechanisms of forsterite from a glassy to molten state, we performed molecular dynamics calculations in a temperature range of 10–3000 K. The results show that the thermal expansion coefficient changes remarkably at around 1567 K during heating from 10 K. This temperature is the transition point from glassy to liquid states. To investigate the mechanisms of the phase transition, shear viscosity and self-diffusion processes of atoms were analyzed. The result shows that the increasing rates of diffusion coefficients with heating change at around 1300 and 1800 K. This suggests that a diffusion mechanism changes in the supercooled liquid state. From the observation of the trajectories of atoms, it was found that atoms migrate through discontinuous hopping in the supercooled liquid matrices. The hopping probability of atoms, which is located in positions with higher Si and lower Mg densities, is higher than the average probability at low temperatures. The result indicates a dynamical correlation between the hops of atoms in the supercooled liquid state, while Brownian motion is the main mechanism of diffusion in the liquid phase at temperatures above the melting point. The mechanism of the glass–liquid transition of forsterite is important for understanding the evolution process of minerals in space.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsearthspacechem.9b00238</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5265-4706</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2472-3452
ispartof ACS earth and space chemistry, 2020-03, Vol.4 (3), p.328-334
issn 2472-3452
2472-3452
language eng
recordid cdi_crossref_primary_10_1021_acsearthspacechem_9b00238
source American Chemical Society Journals
title Phase-Transition Dynamics of Forsterite from Glass to Liquid States
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T04%3A10%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase-Transition%20Dynamics%20of%20Forsterite%20from%20Glass%20to%20Liquid%20States&rft.jtitle=ACS%20earth%20and%20space%20chemistry&rft.au=Nishizawa,%20Junya&rft.date=2020-03-19&rft.volume=4&rft.issue=3&rft.spage=328&rft.epage=334&rft.pages=328-334&rft.issn=2472-3452&rft.eissn=2472-3452&rft_id=info:doi/10.1021/acsearthspacechem.9b00238&rft_dat=%3Cacs_cross%3Ed63207936%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true