Electron-Induced Radiolysis of Astrochemically Relevant Ammonia Ices

We elucidate mechanisms of electron-induced radiolysis in cosmic (interstellar, planetary, and cometary) ice analogs of ammonia (NH3), likely the most abundant nitrogen-containing compound in the interstellar medium (ISM). Astrochemical processes were simulated under ultrahigh vacuum conditions by h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS earth and space chemistry 2019-05, Vol.3 (5), p.800-810
Hauptverfasser: Shulenberger, Katherine E, Zhu, Jane L, Tran, Katherine, Abdullahi, Sebiha, Belvin, Carina, Lukens, Julia, Peeler, Zoe, Mullikin, Ella, Cumberbatch, Helen M, Huang, Jean, Regovich, Kathleen, Zhou, Alice, Heller, Lauren, Markovic, Milica, Gates, Leslie, Buffo, Christina, Tano-Menka, Rhoda, Arumainayagam, Christopher R, Böhler, Esther, Swiderek, Petra, Esmaili, Sasan, Bass, Andrew D, Huels, Michael, Sanche, Léon
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 810
container_issue 5
container_start_page 800
container_title ACS earth and space chemistry
container_volume 3
creator Shulenberger, Katherine E
Zhu, Jane L
Tran, Katherine
Abdullahi, Sebiha
Belvin, Carina
Lukens, Julia
Peeler, Zoe
Mullikin, Ella
Cumberbatch, Helen M
Huang, Jean
Regovich, Kathleen
Zhou, Alice
Heller, Lauren
Markovic, Milica
Gates, Leslie
Buffo, Christina
Tano-Menka, Rhoda
Arumainayagam, Christopher R
Böhler, Esther
Swiderek, Petra
Esmaili, Sasan
Bass, Andrew D
Huels, Michael
Sanche, Léon
description We elucidate mechanisms of electron-induced radiolysis in cosmic (interstellar, planetary, and cometary) ice analogs of ammonia (NH3), likely the most abundant nitrogen-containing compound in the interstellar medium (ISM). Astrochemical processes were simulated under ultrahigh vacuum conditions by high-energy (1 keV) and low-energy (7 eV) electron-irradiation of nanoscale thin films of ammonia deposited on cryogenically cooled metal substrates. Irradiated films were analyzed by temperature-programmed desorption (TPD). Experiments with ammonia isotopologues provide convincing evidence for the electron-induced formation of hydrazine (N2H4) and diazene (N2H2) from condensed NH3. To understand the dynamics of ammonia radiolysis, the dependence of hydrazine and diazene yields on incident electron energy, electron flux, electron fluence, film thickness, and ice temperature were investigated. Radiolysis yield measurements versus (1) irradiation time and (2) film thickness are semiquantitatively consistent with a reaction mechanism that involves a bimolecular step for the formation of hydrazine and diazene from the dimerization of amidogen (NH2) and imine (NH) radicals, respectively. The apparent decrease in radiolysis yield of hydrazine and diazene with decreasing electron flux at constant fluence may be due to the competing desorption of these radicals at 90 K under low incident electron flux conditions. The production of hydrazine at electron energies as low as 7 eV and an ice temperature of 22 K is consistent with condensed phase radiolysis being mediated by low-energy secondary electrons produced by the interaction of high-energy radiation with matter. These results provide a basis from which we can begin to understand the mechanisms by which ammonia can form more complex species in cosmic ices.
doi_str_mv 10.1021/acsearthspacechem.8b00169
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsearthspacechem_8b00169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c063399245</sourcerecordid><originalsourceid>FETCH-LOGICAL-a358t-ab1b9897f7b6cce85a6630eef66eb6f9eaf0de1741b661027de1a9e1eedea62e3</originalsourceid><addsrcrecordid>eNqNkMFqwzAMhs3YYKXrO3gPkM6OEyc-hq7bCoVB2c5GcWSa4iTFTgd5-7m0h0EvO0lC__8jfYQ8c7bkLOUvYAKCH_fhCAbNHrtlWTPGpbojszQr0kRkeXr_p38kixAOLGqUECUrZ-R17dCMfuiTTd-cDDZ0B007uCm0gQ6WViEuz9GtAecmukOHP9CPtOq6oW-BbgyGJ_JgwQVcXOucfL-tv1YfyfbzfbOqtgmIvBwTqHmtSlXYopbGYJmDlIIhWimxllYhWNYgLzJeSxkfLOIACjligyBTFHOiLrnGDyF4tPro2w78pDnTZyL6hoi-Eone_OKNEn0YTr6Pl_7D9wsGIW6Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electron-Induced Radiolysis of Astrochemically Relevant Ammonia Ices</title><source>American Chemical Society Journals</source><creator>Shulenberger, Katherine E ; Zhu, Jane L ; Tran, Katherine ; Abdullahi, Sebiha ; Belvin, Carina ; Lukens, Julia ; Peeler, Zoe ; Mullikin, Ella ; Cumberbatch, Helen M ; Huang, Jean ; Regovich, Kathleen ; Zhou, Alice ; Heller, Lauren ; Markovic, Milica ; Gates, Leslie ; Buffo, Christina ; Tano-Menka, Rhoda ; Arumainayagam, Christopher R ; Böhler, Esther ; Swiderek, Petra ; Esmaili, Sasan ; Bass, Andrew D ; Huels, Michael ; Sanche, Léon</creator><creatorcontrib>Shulenberger, Katherine E ; Zhu, Jane L ; Tran, Katherine ; Abdullahi, Sebiha ; Belvin, Carina ; Lukens, Julia ; Peeler, Zoe ; Mullikin, Ella ; Cumberbatch, Helen M ; Huang, Jean ; Regovich, Kathleen ; Zhou, Alice ; Heller, Lauren ; Markovic, Milica ; Gates, Leslie ; Buffo, Christina ; Tano-Menka, Rhoda ; Arumainayagam, Christopher R ; Böhler, Esther ; Swiderek, Petra ; Esmaili, Sasan ; Bass, Andrew D ; Huels, Michael ; Sanche, Léon</creatorcontrib><description>We elucidate mechanisms of electron-induced radiolysis in cosmic (interstellar, planetary, and cometary) ice analogs of ammonia (NH3), likely the most abundant nitrogen-containing compound in the interstellar medium (ISM). Astrochemical processes were simulated under ultrahigh vacuum conditions by high-energy (1 keV) and low-energy (7 eV) electron-irradiation of nanoscale thin films of ammonia deposited on cryogenically cooled metal substrates. Irradiated films were analyzed by temperature-programmed desorption (TPD). Experiments with ammonia isotopologues provide convincing evidence for the electron-induced formation of hydrazine (N2H4) and diazene (N2H2) from condensed NH3. To understand the dynamics of ammonia radiolysis, the dependence of hydrazine and diazene yields on incident electron energy, electron flux, electron fluence, film thickness, and ice temperature were investigated. Radiolysis yield measurements versus (1) irradiation time and (2) film thickness are semiquantitatively consistent with a reaction mechanism that involves a bimolecular step for the formation of hydrazine and diazene from the dimerization of amidogen (NH2) and imine (NH) radicals, respectively. The apparent decrease in radiolysis yield of hydrazine and diazene with decreasing electron flux at constant fluence may be due to the competing desorption of these radicals at 90 K under low incident electron flux conditions. The production of hydrazine at electron energies as low as 7 eV and an ice temperature of 22 K is consistent with condensed phase radiolysis being mediated by low-energy secondary electrons produced by the interaction of high-energy radiation with matter. These results provide a basis from which we can begin to understand the mechanisms by which ammonia can form more complex species in cosmic ices.</description><identifier>ISSN: 2472-3452</identifier><identifier>EISSN: 2472-3452</identifier><identifier>DOI: 10.1021/acsearthspacechem.8b00169</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS earth and space chemistry, 2019-05, Vol.3 (5), p.800-810</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a358t-ab1b9897f7b6cce85a6630eef66eb6f9eaf0de1741b661027de1a9e1eedea62e3</citedby><cites>FETCH-LOGICAL-a358t-ab1b9897f7b6cce85a6630eef66eb6f9eaf0de1741b661027de1a9e1eedea62e3</cites><orcidid>0000-0002-0722-1151</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsearthspacechem.8b00169$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsearthspacechem.8b00169$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Shulenberger, Katherine E</creatorcontrib><creatorcontrib>Zhu, Jane L</creatorcontrib><creatorcontrib>Tran, Katherine</creatorcontrib><creatorcontrib>Abdullahi, Sebiha</creatorcontrib><creatorcontrib>Belvin, Carina</creatorcontrib><creatorcontrib>Lukens, Julia</creatorcontrib><creatorcontrib>Peeler, Zoe</creatorcontrib><creatorcontrib>Mullikin, Ella</creatorcontrib><creatorcontrib>Cumberbatch, Helen M</creatorcontrib><creatorcontrib>Huang, Jean</creatorcontrib><creatorcontrib>Regovich, Kathleen</creatorcontrib><creatorcontrib>Zhou, Alice</creatorcontrib><creatorcontrib>Heller, Lauren</creatorcontrib><creatorcontrib>Markovic, Milica</creatorcontrib><creatorcontrib>Gates, Leslie</creatorcontrib><creatorcontrib>Buffo, Christina</creatorcontrib><creatorcontrib>Tano-Menka, Rhoda</creatorcontrib><creatorcontrib>Arumainayagam, Christopher R</creatorcontrib><creatorcontrib>Böhler, Esther</creatorcontrib><creatorcontrib>Swiderek, Petra</creatorcontrib><creatorcontrib>Esmaili, Sasan</creatorcontrib><creatorcontrib>Bass, Andrew D</creatorcontrib><creatorcontrib>Huels, Michael</creatorcontrib><creatorcontrib>Sanche, Léon</creatorcontrib><title>Electron-Induced Radiolysis of Astrochemically Relevant Ammonia Ices</title><title>ACS earth and space chemistry</title><addtitle>ACS Earth Space Chem</addtitle><description>We elucidate mechanisms of electron-induced radiolysis in cosmic (interstellar, planetary, and cometary) ice analogs of ammonia (NH3), likely the most abundant nitrogen-containing compound in the interstellar medium (ISM). Astrochemical processes were simulated under ultrahigh vacuum conditions by high-energy (1 keV) and low-energy (7 eV) electron-irradiation of nanoscale thin films of ammonia deposited on cryogenically cooled metal substrates. Irradiated films were analyzed by temperature-programmed desorption (TPD). Experiments with ammonia isotopologues provide convincing evidence for the electron-induced formation of hydrazine (N2H4) and diazene (N2H2) from condensed NH3. To understand the dynamics of ammonia radiolysis, the dependence of hydrazine and diazene yields on incident electron energy, electron flux, electron fluence, film thickness, and ice temperature were investigated. Radiolysis yield measurements versus (1) irradiation time and (2) film thickness are semiquantitatively consistent with a reaction mechanism that involves a bimolecular step for the formation of hydrazine and diazene from the dimerization of amidogen (NH2) and imine (NH) radicals, respectively. The apparent decrease in radiolysis yield of hydrazine and diazene with decreasing electron flux at constant fluence may be due to the competing desorption of these radicals at 90 K under low incident electron flux conditions. The production of hydrazine at electron energies as low as 7 eV and an ice temperature of 22 K is consistent with condensed phase radiolysis being mediated by low-energy secondary electrons produced by the interaction of high-energy radiation with matter. These results provide a basis from which we can begin to understand the mechanisms by which ammonia can form more complex species in cosmic ices.</description><issn>2472-3452</issn><issn>2472-3452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkMFqwzAMhs3YYKXrO3gPkM6OEyc-hq7bCoVB2c5GcWSa4iTFTgd5-7m0h0EvO0lC__8jfYQ8c7bkLOUvYAKCH_fhCAbNHrtlWTPGpbojszQr0kRkeXr_p38kixAOLGqUECUrZ-R17dCMfuiTTd-cDDZ0B007uCm0gQ6WViEuz9GtAecmukOHP9CPtOq6oW-BbgyGJ_JgwQVcXOucfL-tv1YfyfbzfbOqtgmIvBwTqHmtSlXYopbGYJmDlIIhWimxllYhWNYgLzJeSxkfLOIACjligyBTFHOiLrnGDyF4tPro2w78pDnTZyL6hoi-Eone_OKNEn0YTr6Pl_7D9wsGIW6Y</recordid><startdate>20190516</startdate><enddate>20190516</enddate><creator>Shulenberger, Katherine E</creator><creator>Zhu, Jane L</creator><creator>Tran, Katherine</creator><creator>Abdullahi, Sebiha</creator><creator>Belvin, Carina</creator><creator>Lukens, Julia</creator><creator>Peeler, Zoe</creator><creator>Mullikin, Ella</creator><creator>Cumberbatch, Helen M</creator><creator>Huang, Jean</creator><creator>Regovich, Kathleen</creator><creator>Zhou, Alice</creator><creator>Heller, Lauren</creator><creator>Markovic, Milica</creator><creator>Gates, Leslie</creator><creator>Buffo, Christina</creator><creator>Tano-Menka, Rhoda</creator><creator>Arumainayagam, Christopher R</creator><creator>Böhler, Esther</creator><creator>Swiderek, Petra</creator><creator>Esmaili, Sasan</creator><creator>Bass, Andrew D</creator><creator>Huels, Michael</creator><creator>Sanche, Léon</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0722-1151</orcidid></search><sort><creationdate>20190516</creationdate><title>Electron-Induced Radiolysis of Astrochemically Relevant Ammonia Ices</title><author>Shulenberger, Katherine E ; Zhu, Jane L ; Tran, Katherine ; Abdullahi, Sebiha ; Belvin, Carina ; Lukens, Julia ; Peeler, Zoe ; Mullikin, Ella ; Cumberbatch, Helen M ; Huang, Jean ; Regovich, Kathleen ; Zhou, Alice ; Heller, Lauren ; Markovic, Milica ; Gates, Leslie ; Buffo, Christina ; Tano-Menka, Rhoda ; Arumainayagam, Christopher R ; Böhler, Esther ; Swiderek, Petra ; Esmaili, Sasan ; Bass, Andrew D ; Huels, Michael ; Sanche, Léon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a358t-ab1b9897f7b6cce85a6630eef66eb6f9eaf0de1741b661027de1a9e1eedea62e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shulenberger, Katherine E</creatorcontrib><creatorcontrib>Zhu, Jane L</creatorcontrib><creatorcontrib>Tran, Katherine</creatorcontrib><creatorcontrib>Abdullahi, Sebiha</creatorcontrib><creatorcontrib>Belvin, Carina</creatorcontrib><creatorcontrib>Lukens, Julia</creatorcontrib><creatorcontrib>Peeler, Zoe</creatorcontrib><creatorcontrib>Mullikin, Ella</creatorcontrib><creatorcontrib>Cumberbatch, Helen M</creatorcontrib><creatorcontrib>Huang, Jean</creatorcontrib><creatorcontrib>Regovich, Kathleen</creatorcontrib><creatorcontrib>Zhou, Alice</creatorcontrib><creatorcontrib>Heller, Lauren</creatorcontrib><creatorcontrib>Markovic, Milica</creatorcontrib><creatorcontrib>Gates, Leslie</creatorcontrib><creatorcontrib>Buffo, Christina</creatorcontrib><creatorcontrib>Tano-Menka, Rhoda</creatorcontrib><creatorcontrib>Arumainayagam, Christopher R</creatorcontrib><creatorcontrib>Böhler, Esther</creatorcontrib><creatorcontrib>Swiderek, Petra</creatorcontrib><creatorcontrib>Esmaili, Sasan</creatorcontrib><creatorcontrib>Bass, Andrew D</creatorcontrib><creatorcontrib>Huels, Michael</creatorcontrib><creatorcontrib>Sanche, Léon</creatorcontrib><collection>CrossRef</collection><jtitle>ACS earth and space chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shulenberger, Katherine E</au><au>Zhu, Jane L</au><au>Tran, Katherine</au><au>Abdullahi, Sebiha</au><au>Belvin, Carina</au><au>Lukens, Julia</au><au>Peeler, Zoe</au><au>Mullikin, Ella</au><au>Cumberbatch, Helen M</au><au>Huang, Jean</au><au>Regovich, Kathleen</au><au>Zhou, Alice</au><au>Heller, Lauren</au><au>Markovic, Milica</au><au>Gates, Leslie</au><au>Buffo, Christina</au><au>Tano-Menka, Rhoda</au><au>Arumainayagam, Christopher R</au><au>Böhler, Esther</au><au>Swiderek, Petra</au><au>Esmaili, Sasan</au><au>Bass, Andrew D</au><au>Huels, Michael</au><au>Sanche, Léon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron-Induced Radiolysis of Astrochemically Relevant Ammonia Ices</atitle><jtitle>ACS earth and space chemistry</jtitle><addtitle>ACS Earth Space Chem</addtitle><date>2019-05-16</date><risdate>2019</risdate><volume>3</volume><issue>5</issue><spage>800</spage><epage>810</epage><pages>800-810</pages><issn>2472-3452</issn><eissn>2472-3452</eissn><abstract>We elucidate mechanisms of electron-induced radiolysis in cosmic (interstellar, planetary, and cometary) ice analogs of ammonia (NH3), likely the most abundant nitrogen-containing compound in the interstellar medium (ISM). Astrochemical processes were simulated under ultrahigh vacuum conditions by high-energy (1 keV) and low-energy (7 eV) electron-irradiation of nanoscale thin films of ammonia deposited on cryogenically cooled metal substrates. Irradiated films were analyzed by temperature-programmed desorption (TPD). Experiments with ammonia isotopologues provide convincing evidence for the electron-induced formation of hydrazine (N2H4) and diazene (N2H2) from condensed NH3. To understand the dynamics of ammonia radiolysis, the dependence of hydrazine and diazene yields on incident electron energy, electron flux, electron fluence, film thickness, and ice temperature were investigated. Radiolysis yield measurements versus (1) irradiation time and (2) film thickness are semiquantitatively consistent with a reaction mechanism that involves a bimolecular step for the formation of hydrazine and diazene from the dimerization of amidogen (NH2) and imine (NH) radicals, respectively. The apparent decrease in radiolysis yield of hydrazine and diazene with decreasing electron flux at constant fluence may be due to the competing desorption of these radicals at 90 K under low incident electron flux conditions. The production of hydrazine at electron energies as low as 7 eV and an ice temperature of 22 K is consistent with condensed phase radiolysis being mediated by low-energy secondary electrons produced by the interaction of high-energy radiation with matter. These results provide a basis from which we can begin to understand the mechanisms by which ammonia can form more complex species in cosmic ices.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsearthspacechem.8b00169</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0722-1151</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2472-3452
ispartof ACS earth and space chemistry, 2019-05, Vol.3 (5), p.800-810
issn 2472-3452
2472-3452
language eng
recordid cdi_crossref_primary_10_1021_acsearthspacechem_8b00169
source American Chemical Society Journals
title Electron-Induced Radiolysis of Astrochemically Relevant Ammonia Ices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T09%3A00%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron-Induced%20Radiolysis%20of%20Astrochemically%20Relevant%20Ammonia%20Ices&rft.jtitle=ACS%20earth%20and%20space%20chemistry&rft.au=Shulenberger,%20Katherine%20E&rft.date=2019-05-16&rft.volume=3&rft.issue=5&rft.spage=800&rft.epage=810&rft.pages=800-810&rft.issn=2472-3452&rft.eissn=2472-3452&rft_id=info:doi/10.1021/acsearthspacechem.8b00169&rft_dat=%3Cacs_cross%3Ec063399245%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true