Carbon Mineralization and Critical Mineral Resource Evaluation Pathways for Mafic–Ultramafic Assets

Locating and developing ideal sites for large-scale capture and storage of carbon dioxide has become increasingly necessary due to increasing global emissions and warming. Mafic–ultramafic rocks present a unique geologic setting as they can trap injected CO2 in pore space, mineralize that CO2 to per...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS earth and space chemistry 2024-06, Vol.8 (6), p.1204-1213
Hauptverfasser: Stanfield, C. Heath, Miller, Quin R. S., Battu, Anil K., Lahiri, Nabajit, Nagurney, Alexandra B., Cao, Ruoshi, Nienhuis, Emily T., DePaolo, Donald J., Latta, Drew E., Schaef, H. Todd
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1213
container_issue 6
container_start_page 1204
container_title ACS earth and space chemistry
container_volume 8
creator Stanfield, C. Heath
Miller, Quin R. S.
Battu, Anil K.
Lahiri, Nabajit
Nagurney, Alexandra B.
Cao, Ruoshi
Nienhuis, Emily T.
DePaolo, Donald J.
Latta, Drew E.
Schaef, H. Todd
description Locating and developing ideal sites for large-scale capture and storage of carbon dioxide has become increasingly necessary due to increasing global emissions and warming. Mafic–ultramafic rocks present a unique geologic setting as they can trap injected CO2 in pore space, mineralize that CO2 to permanently store it as carbonate minerals, and simultaneously release critical minerals. However, these reservoirs are undercharacterized relative to sedimentary carbon storage settings. In this study, we execute a methodology for determining carbonation and critical mineral recovery potential in mafic–ultramafic reservoirs. Using an olivine-rich basalt from the island of Hawai’i, we performed petrologic and geochemical analyses to determine its chemistry, mineralogy, and pore network architecture. We use this data to first quantify the nonreactive storage resource potential and determine the bulk storage of 50 MMT of CO2 in the pore space of a basalt volume test case, along with realistic P10, P50, and P90 scenarios for that same volume. Then, using the chemistry and mineralogy, we both estimate the total mineralization and critical mineral recovery potential, as well as more realistic values based on dissolution–precipitation reactions at the surface areas of pores. This storage resource estimate methodology can assist in accelerating the global commercialization of geologic carbon storage and critical mineral recovery.
doi_str_mv 10.1021/acsearthspacechem.4c00005
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsearthspacechem_4c00005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d156834723</sourcerecordid><originalsourceid>FETCH-LOGICAL-a181t-c7826ccaf07b37ccfd824265d45e4bf1a1021b6270549299e6d18b581edd3bd13</originalsourceid><addsrcrecordid>eNqNUMtqwzAQFKWFhjT_oH6AU0uWbPkYTPqAhJbSnM1aD6zg2EFSWtJT_6F_2C-pQlIo9NK97A47s-wMQtcknZKUkhuQXoMLrd-C1LLVmymTaSx-hkaUFTTJGKfnv-ZLNPF-HRmkzDKRihHSFbhm6PHS9tpBZ98h2AihV7hyNlgJ3c8OP2s_7JzUeP4K3e5IfILQvsHeYzM4vARj5dfH56oLDjYHgGfe6-Cv0IWBzuvJqY_R6nb-Ut0ni8e7h2q2SIAIEhJZCJpLCSYtmqyQ0ihBGc25YlyzxhA4uG5yWqSclbQsda6IaLggWqmsUSQbo_J4V7rBe6dNvXV2A25fk7Q-iOs_kdWnyKKWH7WRUq-j0T5--g_dNx5cemg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Carbon Mineralization and Critical Mineral Resource Evaluation Pathways for Mafic–Ultramafic Assets</title><source>ACS Publications</source><creator>Stanfield, C. Heath ; Miller, Quin R. S. ; Battu, Anil K. ; Lahiri, Nabajit ; Nagurney, Alexandra B. ; Cao, Ruoshi ; Nienhuis, Emily T. ; DePaolo, Donald J. ; Latta, Drew E. ; Schaef, H. Todd</creator><creatorcontrib>Stanfield, C. Heath ; Miller, Quin R. S. ; Battu, Anil K. ; Lahiri, Nabajit ; Nagurney, Alexandra B. ; Cao, Ruoshi ; Nienhuis, Emily T. ; DePaolo, Donald J. ; Latta, Drew E. ; Schaef, H. Todd</creatorcontrib><description>Locating and developing ideal sites for large-scale capture and storage of carbon dioxide has become increasingly necessary due to increasing global emissions and warming. Mafic–ultramafic rocks present a unique geologic setting as they can trap injected CO2 in pore space, mineralize that CO2 to permanently store it as carbonate minerals, and simultaneously release critical minerals. However, these reservoirs are undercharacterized relative to sedimentary carbon storage settings. In this study, we execute a methodology for determining carbonation and critical mineral recovery potential in mafic–ultramafic reservoirs. Using an olivine-rich basalt from the island of Hawai’i, we performed petrologic and geochemical analyses to determine its chemistry, mineralogy, and pore network architecture. We use this data to first quantify the nonreactive storage resource potential and determine the bulk storage of 50 MMT of CO2 in the pore space of a basalt volume test case, along with realistic P10, P50, and P90 scenarios for that same volume. Then, using the chemistry and mineralogy, we both estimate the total mineralization and critical mineral recovery potential, as well as more realistic values based on dissolution–precipitation reactions at the surface areas of pores. This storage resource estimate methodology can assist in accelerating the global commercialization of geologic carbon storage and critical mineral recovery.</description><identifier>ISSN: 2472-3452</identifier><identifier>EISSN: 2472-3452</identifier><identifier>DOI: 10.1021/acsearthspacechem.4c00005</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS earth and space chemistry, 2024-06, Vol.8 (6), p.1204-1213</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a181t-c7826ccaf07b37ccfd824265d45e4bf1a1021b6270549299e6d18b581edd3bd13</cites><orcidid>0000-0003-3009-9702 ; 0000-0001-9414-5590 ; 0000-0002-5020-6010 ; 0000-0002-8646-7650 ; 0000-0001-7724-5100 ; 0000-0003-1137-2240 ; 0000-0003-4348-5506 ; 0000-0002-4546-3979</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsearthspacechem.4c00005$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsearthspacechem.4c00005$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27059,27907,27908,56721,56771</link.rule.ids></links><search><creatorcontrib>Stanfield, C. Heath</creatorcontrib><creatorcontrib>Miller, Quin R. S.</creatorcontrib><creatorcontrib>Battu, Anil K.</creatorcontrib><creatorcontrib>Lahiri, Nabajit</creatorcontrib><creatorcontrib>Nagurney, Alexandra B.</creatorcontrib><creatorcontrib>Cao, Ruoshi</creatorcontrib><creatorcontrib>Nienhuis, Emily T.</creatorcontrib><creatorcontrib>DePaolo, Donald J.</creatorcontrib><creatorcontrib>Latta, Drew E.</creatorcontrib><creatorcontrib>Schaef, H. Todd</creatorcontrib><title>Carbon Mineralization and Critical Mineral Resource Evaluation Pathways for Mafic–Ultramafic Assets</title><title>ACS earth and space chemistry</title><addtitle>ACS Earth Space Chem</addtitle><description>Locating and developing ideal sites for large-scale capture and storage of carbon dioxide has become increasingly necessary due to increasing global emissions and warming. Mafic–ultramafic rocks present a unique geologic setting as they can trap injected CO2 in pore space, mineralize that CO2 to permanently store it as carbonate minerals, and simultaneously release critical minerals. However, these reservoirs are undercharacterized relative to sedimentary carbon storage settings. In this study, we execute a methodology for determining carbonation and critical mineral recovery potential in mafic–ultramafic reservoirs. Using an olivine-rich basalt from the island of Hawai’i, we performed petrologic and geochemical analyses to determine its chemistry, mineralogy, and pore network architecture. We use this data to first quantify the nonreactive storage resource potential and determine the bulk storage of 50 MMT of CO2 in the pore space of a basalt volume test case, along with realistic P10, P50, and P90 scenarios for that same volume. Then, using the chemistry and mineralogy, we both estimate the total mineralization and critical mineral recovery potential, as well as more realistic values based on dissolution–precipitation reactions at the surface areas of pores. This storage resource estimate methodology can assist in accelerating the global commercialization of geologic carbon storage and critical mineral recovery.</description><issn>2472-3452</issn><issn>2472-3452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNUMtqwzAQFKWFhjT_oH6AU0uWbPkYTPqAhJbSnM1aD6zg2EFSWtJT_6F_2C-pQlIo9NK97A47s-wMQtcknZKUkhuQXoMLrd-C1LLVmymTaSx-hkaUFTTJGKfnv-ZLNPF-HRmkzDKRihHSFbhm6PHS9tpBZ98h2AihV7hyNlgJ3c8OP2s_7JzUeP4K3e5IfILQvsHeYzM4vARj5dfH56oLDjYHgGfe6-Cv0IWBzuvJqY_R6nb-Ut0ni8e7h2q2SIAIEhJZCJpLCSYtmqyQ0ihBGc25YlyzxhA4uG5yWqSclbQsda6IaLggWqmsUSQbo_J4V7rBe6dNvXV2A25fk7Q-iOs_kdWnyKKWH7WRUq-j0T5--g_dNx5cemg</recordid><startdate>20240620</startdate><enddate>20240620</enddate><creator>Stanfield, C. Heath</creator><creator>Miller, Quin R. S.</creator><creator>Battu, Anil K.</creator><creator>Lahiri, Nabajit</creator><creator>Nagurney, Alexandra B.</creator><creator>Cao, Ruoshi</creator><creator>Nienhuis, Emily T.</creator><creator>DePaolo, Donald J.</creator><creator>Latta, Drew E.</creator><creator>Schaef, H. Todd</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3009-9702</orcidid><orcidid>https://orcid.org/0000-0001-9414-5590</orcidid><orcidid>https://orcid.org/0000-0002-5020-6010</orcidid><orcidid>https://orcid.org/0000-0002-8646-7650</orcidid><orcidid>https://orcid.org/0000-0001-7724-5100</orcidid><orcidid>https://orcid.org/0000-0003-1137-2240</orcidid><orcidid>https://orcid.org/0000-0003-4348-5506</orcidid><orcidid>https://orcid.org/0000-0002-4546-3979</orcidid></search><sort><creationdate>20240620</creationdate><title>Carbon Mineralization and Critical Mineral Resource Evaluation Pathways for Mafic–Ultramafic Assets</title><author>Stanfield, C. Heath ; Miller, Quin R. S. ; Battu, Anil K. ; Lahiri, Nabajit ; Nagurney, Alexandra B. ; Cao, Ruoshi ; Nienhuis, Emily T. ; DePaolo, Donald J. ; Latta, Drew E. ; Schaef, H. Todd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a181t-c7826ccaf07b37ccfd824265d45e4bf1a1021b6270549299e6d18b581edd3bd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stanfield, C. Heath</creatorcontrib><creatorcontrib>Miller, Quin R. S.</creatorcontrib><creatorcontrib>Battu, Anil K.</creatorcontrib><creatorcontrib>Lahiri, Nabajit</creatorcontrib><creatorcontrib>Nagurney, Alexandra B.</creatorcontrib><creatorcontrib>Cao, Ruoshi</creatorcontrib><creatorcontrib>Nienhuis, Emily T.</creatorcontrib><creatorcontrib>DePaolo, Donald J.</creatorcontrib><creatorcontrib>Latta, Drew E.</creatorcontrib><creatorcontrib>Schaef, H. Todd</creatorcontrib><collection>CrossRef</collection><jtitle>ACS earth and space chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stanfield, C. Heath</au><au>Miller, Quin R. S.</au><au>Battu, Anil K.</au><au>Lahiri, Nabajit</au><au>Nagurney, Alexandra B.</au><au>Cao, Ruoshi</au><au>Nienhuis, Emily T.</au><au>DePaolo, Donald J.</au><au>Latta, Drew E.</au><au>Schaef, H. Todd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon Mineralization and Critical Mineral Resource Evaluation Pathways for Mafic–Ultramafic Assets</atitle><jtitle>ACS earth and space chemistry</jtitle><addtitle>ACS Earth Space Chem</addtitle><date>2024-06-20</date><risdate>2024</risdate><volume>8</volume><issue>6</issue><spage>1204</spage><epage>1213</epage><pages>1204-1213</pages><issn>2472-3452</issn><eissn>2472-3452</eissn><abstract>Locating and developing ideal sites for large-scale capture and storage of carbon dioxide has become increasingly necessary due to increasing global emissions and warming. Mafic–ultramafic rocks present a unique geologic setting as they can trap injected CO2 in pore space, mineralize that CO2 to permanently store it as carbonate minerals, and simultaneously release critical minerals. However, these reservoirs are undercharacterized relative to sedimentary carbon storage settings. In this study, we execute a methodology for determining carbonation and critical mineral recovery potential in mafic–ultramafic reservoirs. Using an olivine-rich basalt from the island of Hawai’i, we performed petrologic and geochemical analyses to determine its chemistry, mineralogy, and pore network architecture. We use this data to first quantify the nonreactive storage resource potential and determine the bulk storage of 50 MMT of CO2 in the pore space of a basalt volume test case, along with realistic P10, P50, and P90 scenarios for that same volume. Then, using the chemistry and mineralogy, we both estimate the total mineralization and critical mineral recovery potential, as well as more realistic values based on dissolution–precipitation reactions at the surface areas of pores. This storage resource estimate methodology can assist in accelerating the global commercialization of geologic carbon storage and critical mineral recovery.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsearthspacechem.4c00005</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3009-9702</orcidid><orcidid>https://orcid.org/0000-0001-9414-5590</orcidid><orcidid>https://orcid.org/0000-0002-5020-6010</orcidid><orcidid>https://orcid.org/0000-0002-8646-7650</orcidid><orcidid>https://orcid.org/0000-0001-7724-5100</orcidid><orcidid>https://orcid.org/0000-0003-1137-2240</orcidid><orcidid>https://orcid.org/0000-0003-4348-5506</orcidid><orcidid>https://orcid.org/0000-0002-4546-3979</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2472-3452
ispartof ACS earth and space chemistry, 2024-06, Vol.8 (6), p.1204-1213
issn 2472-3452
2472-3452
language eng
recordid cdi_crossref_primary_10_1021_acsearthspacechem_4c00005
source ACS Publications
title Carbon Mineralization and Critical Mineral Resource Evaluation Pathways for Mafic–Ultramafic Assets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A43%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20Mineralization%20and%20Critical%20Mineral%20Resource%20Evaluation%20Pathways%20for%20Mafic%E2%80%93Ultramafic%20Assets&rft.jtitle=ACS%20earth%20and%20space%20chemistry&rft.au=Stanfield,%20C.%20Heath&rft.date=2024-06-20&rft.volume=8&rft.issue=6&rft.spage=1204&rft.epage=1213&rft.pages=1204-1213&rft.issn=2472-3452&rft.eissn=2472-3452&rft_id=info:doi/10.1021/acsearthspacechem.4c00005&rft_dat=%3Cacs_cross%3Ed156834723%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true