Fluid-Assisted Aggregation and Assembly of Magnetite Microparticles in the Giant El Laco Iron Oxide Deposit, Central Andes

The El Laco iron oxide mineral deposit in the Central Andes of Chile has attracted significant attention because of its uniquely preserved massive magnetite orebodies, which bear a remarkable similarity to volcanic products. To date, the outcropping highly vesicular and porous massive magnetite oreb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS earth and space chemistry 2023-07, Vol.7 (7), p.1378-1387
Hauptverfasser: Ovalle, J. Tomás, Reich, Martin, Barra, Fernando, Simon, Adam C., Godel, Belinda, Le Vaillant, Margaux, Palma, Gisella, Deditius, Artur P., Heuser, Gert, Arancibia, Gloria, Morata, Diego
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1387
container_issue 7
container_start_page 1378
container_title ACS earth and space chemistry
container_volume 7
creator Ovalle, J. Tomás
Reich, Martin
Barra, Fernando
Simon, Adam C.
Godel, Belinda
Le Vaillant, Margaux
Palma, Gisella
Deditius, Artur P.
Heuser, Gert
Arancibia, Gloria
Morata, Diego
description The El Laco iron oxide mineral deposit in the Central Andes of Chile has attracted significant attention because of its uniquely preserved massive magnetite orebodies, which bear a remarkable similarity to volcanic products. To date, the outcropping highly vesicular and porous massive magnetite orebodies have received little attention from a microtextural point of view, limiting our understanding about the role of volcanogenic processes on iron mineralization. Here, we report the chemical composition of vesicular magnetite at El Laco using EPMA and LA-ICP-MS methods and provide detailed 2D and 3D imaging of the internal structure of these texturally complex magnetite ores by combining SEM observations, synchrotron radiation micro-X-ray fluorescence chemical mapping, and high-resolution X-ray computed microtomography. Our observations reveal the presence of abundant magnetite microspheres with diameters ranging from ∼100 to ∼900 μm, as well as dendritic microstructures forming interconnected networks up to a few millimeters in size. Two-dimensional microtextural and geochemical imaging of the microspheres show that these features are formed by multiple euhedral magnetite crystals growing in all directions and occur immersed within a porous matrix conformed by smaller-sized (∼2–20 μm) and irregularly shaped magnetite microparticles. These types of morphologies have been reported in hydrothermal vents associated with hydrovolcanic processes and commonly described in hydrothermal synthesis experiments of magnetite microspheres, suggesting precipitation from iron-rich fluids. A hydrothermal origin for the magnetite microparticles reported here is further supported by their geochemical signature, which shows a strong depletion in most minor and trace elements typical from magnetite precipitated from hydrothermal fluids in ore-forming environments. We propose that decompression, cooling, and boiling of fluids triggered massive iron supersaturation, resulting in the nucleation of magnetite microparticles or colloids, followed by self-assembly into larger and more complex microstructures. Our data from El Laco deposit agree with models invoking magmatic-hydrothermal fluids to explain the origin of the deposit and provide new insights on the potential role of iron colloids as agents of mineralization in volcanic systems.
doi_str_mv 10.1021/acsearthspacechem.3c00036
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsearthspacechem_3c00036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b577634485</sourcerecordid><originalsourceid>FETCH-LOGICAL-a251t-671c2f76d0aa6a2431514d7400620abecec0e96efa94e842e9b3fc64935f24853</originalsourceid><addsrcrecordid>eNqNUMtOAkEQnBhNJMo_jHcX57Wv4wYBSSBc9LxpZnuXIcssmRkS8esdAwcTL566O6mqripCnjibcCb4C2iP4MLOH0Gj3uFhIjVjTGY3ZCRULhKpUnH7a78nY-_3EcJLKQtWjMjXvD-ZJqm8Nz5gQ6uuc9hBMIOlYOPtPR62_ZkOLV1DZzGYgHRttBuO8bXRPXpqLA07pAsDNtBZT1egB7p0UWLzaRqkr3gcvAnPdIo2OOhpZRv0j-Suhd7j-DofyMd89j59S1abxXJarRIQKQ9JlnMt2jxrGEAGQkmectXkirFMMNhiTM6wzLCFUmGhBJZb2epMlTJthSpS-UDKi2707L3Dtj46cwB3rjmrf3qs__RYX3uM3PTCjZB6P5ycjU7_wfsGHop_gQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fluid-Assisted Aggregation and Assembly of Magnetite Microparticles in the Giant El Laco Iron Oxide Deposit, Central Andes</title><source>ACS Publications</source><creator>Ovalle, J. Tomás ; Reich, Martin ; Barra, Fernando ; Simon, Adam C. ; Godel, Belinda ; Le Vaillant, Margaux ; Palma, Gisella ; Deditius, Artur P. ; Heuser, Gert ; Arancibia, Gloria ; Morata, Diego</creator><creatorcontrib>Ovalle, J. Tomás ; Reich, Martin ; Barra, Fernando ; Simon, Adam C. ; Godel, Belinda ; Le Vaillant, Margaux ; Palma, Gisella ; Deditius, Artur P. ; Heuser, Gert ; Arancibia, Gloria ; Morata, Diego</creatorcontrib><description>The El Laco iron oxide mineral deposit in the Central Andes of Chile has attracted significant attention because of its uniquely preserved massive magnetite orebodies, which bear a remarkable similarity to volcanic products. To date, the outcropping highly vesicular and porous massive magnetite orebodies have received little attention from a microtextural point of view, limiting our understanding about the role of volcanogenic processes on iron mineralization. Here, we report the chemical composition of vesicular magnetite at El Laco using EPMA and LA-ICP-MS methods and provide detailed 2D and 3D imaging of the internal structure of these texturally complex magnetite ores by combining SEM observations, synchrotron radiation micro-X-ray fluorescence chemical mapping, and high-resolution X-ray computed microtomography. Our observations reveal the presence of abundant magnetite microspheres with diameters ranging from ∼100 to ∼900 μm, as well as dendritic microstructures forming interconnected networks up to a few millimeters in size. Two-dimensional microtextural and geochemical imaging of the microspheres show that these features are formed by multiple euhedral magnetite crystals growing in all directions and occur immersed within a porous matrix conformed by smaller-sized (∼2–20 μm) and irregularly shaped magnetite microparticles. These types of morphologies have been reported in hydrothermal vents associated with hydrovolcanic processes and commonly described in hydrothermal synthesis experiments of magnetite microspheres, suggesting precipitation from iron-rich fluids. A hydrothermal origin for the magnetite microparticles reported here is further supported by their geochemical signature, which shows a strong depletion in most minor and trace elements typical from magnetite precipitated from hydrothermal fluids in ore-forming environments. We propose that decompression, cooling, and boiling of fluids triggered massive iron supersaturation, resulting in the nucleation of magnetite microparticles or colloids, followed by self-assembly into larger and more complex microstructures. Our data from El Laco deposit agree with models invoking magmatic-hydrothermal fluids to explain the origin of the deposit and provide new insights on the potential role of iron colloids as agents of mineralization in volcanic systems.</description><identifier>ISSN: 2472-3452</identifier><identifier>EISSN: 2472-3452</identifier><identifier>DOI: 10.1021/acsearthspacechem.3c00036</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS earth and space chemistry, 2023-07, Vol.7 (7), p.1378-1387</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a251t-671c2f76d0aa6a2431514d7400620abecec0e96efa94e842e9b3fc64935f24853</cites><orcidid>0000-0002-7269-7586 ; 0000-0003-2179-5167</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsearthspacechem.3c00036$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsearthspacechem.3c00036$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,782,786,2767,27083,27931,27932,56745,56795</link.rule.ids></links><search><creatorcontrib>Ovalle, J. Tomás</creatorcontrib><creatorcontrib>Reich, Martin</creatorcontrib><creatorcontrib>Barra, Fernando</creatorcontrib><creatorcontrib>Simon, Adam C.</creatorcontrib><creatorcontrib>Godel, Belinda</creatorcontrib><creatorcontrib>Le Vaillant, Margaux</creatorcontrib><creatorcontrib>Palma, Gisella</creatorcontrib><creatorcontrib>Deditius, Artur P.</creatorcontrib><creatorcontrib>Heuser, Gert</creatorcontrib><creatorcontrib>Arancibia, Gloria</creatorcontrib><creatorcontrib>Morata, Diego</creatorcontrib><title>Fluid-Assisted Aggregation and Assembly of Magnetite Microparticles in the Giant El Laco Iron Oxide Deposit, Central Andes</title><title>ACS earth and space chemistry</title><addtitle>ACS Earth Space Chem</addtitle><description>The El Laco iron oxide mineral deposit in the Central Andes of Chile has attracted significant attention because of its uniquely preserved massive magnetite orebodies, which bear a remarkable similarity to volcanic products. To date, the outcropping highly vesicular and porous massive magnetite orebodies have received little attention from a microtextural point of view, limiting our understanding about the role of volcanogenic processes on iron mineralization. Here, we report the chemical composition of vesicular magnetite at El Laco using EPMA and LA-ICP-MS methods and provide detailed 2D and 3D imaging of the internal structure of these texturally complex magnetite ores by combining SEM observations, synchrotron radiation micro-X-ray fluorescence chemical mapping, and high-resolution X-ray computed microtomography. Our observations reveal the presence of abundant magnetite microspheres with diameters ranging from ∼100 to ∼900 μm, as well as dendritic microstructures forming interconnected networks up to a few millimeters in size. Two-dimensional microtextural and geochemical imaging of the microspheres show that these features are formed by multiple euhedral magnetite crystals growing in all directions and occur immersed within a porous matrix conformed by smaller-sized (∼2–20 μm) and irregularly shaped magnetite microparticles. These types of morphologies have been reported in hydrothermal vents associated with hydrovolcanic processes and commonly described in hydrothermal synthesis experiments of magnetite microspheres, suggesting precipitation from iron-rich fluids. A hydrothermal origin for the magnetite microparticles reported here is further supported by their geochemical signature, which shows a strong depletion in most minor and trace elements typical from magnetite precipitated from hydrothermal fluids in ore-forming environments. We propose that decompression, cooling, and boiling of fluids triggered massive iron supersaturation, resulting in the nucleation of magnetite microparticles or colloids, followed by self-assembly into larger and more complex microstructures. Our data from El Laco deposit agree with models invoking magmatic-hydrothermal fluids to explain the origin of the deposit and provide new insights on the potential role of iron colloids as agents of mineralization in volcanic systems.</description><issn>2472-3452</issn><issn>2472-3452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqNUMtOAkEQnBhNJMo_jHcX57Wv4wYBSSBc9LxpZnuXIcssmRkS8esdAwcTL566O6mqripCnjibcCb4C2iP4MLOH0Gj3uFhIjVjTGY3ZCRULhKpUnH7a78nY-_3EcJLKQtWjMjXvD-ZJqm8Nz5gQ6uuc9hBMIOlYOPtPR62_ZkOLV1DZzGYgHRttBuO8bXRPXpqLA07pAsDNtBZT1egB7p0UWLzaRqkr3gcvAnPdIo2OOhpZRv0j-Suhd7j-DofyMd89j59S1abxXJarRIQKQ9JlnMt2jxrGEAGQkmectXkirFMMNhiTM6wzLCFUmGhBJZb2epMlTJthSpS-UDKi2707L3Dtj46cwB3rjmrf3qs__RYX3uM3PTCjZB6P5ycjU7_wfsGHop_gQ</recordid><startdate>20230720</startdate><enddate>20230720</enddate><creator>Ovalle, J. Tomás</creator><creator>Reich, Martin</creator><creator>Barra, Fernando</creator><creator>Simon, Adam C.</creator><creator>Godel, Belinda</creator><creator>Le Vaillant, Margaux</creator><creator>Palma, Gisella</creator><creator>Deditius, Artur P.</creator><creator>Heuser, Gert</creator><creator>Arancibia, Gloria</creator><creator>Morata, Diego</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7269-7586</orcidid><orcidid>https://orcid.org/0000-0003-2179-5167</orcidid></search><sort><creationdate>20230720</creationdate><title>Fluid-Assisted Aggregation and Assembly of Magnetite Microparticles in the Giant El Laco Iron Oxide Deposit, Central Andes</title><author>Ovalle, J. Tomás ; Reich, Martin ; Barra, Fernando ; Simon, Adam C. ; Godel, Belinda ; Le Vaillant, Margaux ; Palma, Gisella ; Deditius, Artur P. ; Heuser, Gert ; Arancibia, Gloria ; Morata, Diego</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a251t-671c2f76d0aa6a2431514d7400620abecec0e96efa94e842e9b3fc64935f24853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ovalle, J. Tomás</creatorcontrib><creatorcontrib>Reich, Martin</creatorcontrib><creatorcontrib>Barra, Fernando</creatorcontrib><creatorcontrib>Simon, Adam C.</creatorcontrib><creatorcontrib>Godel, Belinda</creatorcontrib><creatorcontrib>Le Vaillant, Margaux</creatorcontrib><creatorcontrib>Palma, Gisella</creatorcontrib><creatorcontrib>Deditius, Artur P.</creatorcontrib><creatorcontrib>Heuser, Gert</creatorcontrib><creatorcontrib>Arancibia, Gloria</creatorcontrib><creatorcontrib>Morata, Diego</creatorcontrib><collection>CrossRef</collection><jtitle>ACS earth and space chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ovalle, J. Tomás</au><au>Reich, Martin</au><au>Barra, Fernando</au><au>Simon, Adam C.</au><au>Godel, Belinda</au><au>Le Vaillant, Margaux</au><au>Palma, Gisella</au><au>Deditius, Artur P.</au><au>Heuser, Gert</au><au>Arancibia, Gloria</au><au>Morata, Diego</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluid-Assisted Aggregation and Assembly of Magnetite Microparticles in the Giant El Laco Iron Oxide Deposit, Central Andes</atitle><jtitle>ACS earth and space chemistry</jtitle><addtitle>ACS Earth Space Chem</addtitle><date>2023-07-20</date><risdate>2023</risdate><volume>7</volume><issue>7</issue><spage>1378</spage><epage>1387</epage><pages>1378-1387</pages><issn>2472-3452</issn><eissn>2472-3452</eissn><abstract>The El Laco iron oxide mineral deposit in the Central Andes of Chile has attracted significant attention because of its uniquely preserved massive magnetite orebodies, which bear a remarkable similarity to volcanic products. To date, the outcropping highly vesicular and porous massive magnetite orebodies have received little attention from a microtextural point of view, limiting our understanding about the role of volcanogenic processes on iron mineralization. Here, we report the chemical composition of vesicular magnetite at El Laco using EPMA and LA-ICP-MS methods and provide detailed 2D and 3D imaging of the internal structure of these texturally complex magnetite ores by combining SEM observations, synchrotron radiation micro-X-ray fluorescence chemical mapping, and high-resolution X-ray computed microtomography. Our observations reveal the presence of abundant magnetite microspheres with diameters ranging from ∼100 to ∼900 μm, as well as dendritic microstructures forming interconnected networks up to a few millimeters in size. Two-dimensional microtextural and geochemical imaging of the microspheres show that these features are formed by multiple euhedral magnetite crystals growing in all directions and occur immersed within a porous matrix conformed by smaller-sized (∼2–20 μm) and irregularly shaped magnetite microparticles. These types of morphologies have been reported in hydrothermal vents associated with hydrovolcanic processes and commonly described in hydrothermal synthesis experiments of magnetite microspheres, suggesting precipitation from iron-rich fluids. A hydrothermal origin for the magnetite microparticles reported here is further supported by their geochemical signature, which shows a strong depletion in most minor and trace elements typical from magnetite precipitated from hydrothermal fluids in ore-forming environments. We propose that decompression, cooling, and boiling of fluids triggered massive iron supersaturation, resulting in the nucleation of magnetite microparticles or colloids, followed by self-assembly into larger and more complex microstructures. Our data from El Laco deposit agree with models invoking magmatic-hydrothermal fluids to explain the origin of the deposit and provide new insights on the potential role of iron colloids as agents of mineralization in volcanic systems.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsearthspacechem.3c00036</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7269-7586</orcidid><orcidid>https://orcid.org/0000-0003-2179-5167</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2472-3452
ispartof ACS earth and space chemistry, 2023-07, Vol.7 (7), p.1378-1387
issn 2472-3452
2472-3452
language eng
recordid cdi_crossref_primary_10_1021_acsearthspacechem_3c00036
source ACS Publications
title Fluid-Assisted Aggregation and Assembly of Magnetite Microparticles in the Giant El Laco Iron Oxide Deposit, Central Andes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T04%3A06%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluid-Assisted%20Aggregation%20and%20Assembly%20of%20Magnetite%20Microparticles%20in%20the%20Giant%20El%20Laco%20Iron%20Oxide%20Deposit,%20Central%20Andes&rft.jtitle=ACS%20earth%20and%20space%20chemistry&rft.au=Ovalle,%20J.%20Toma%CC%81s&rft.date=2023-07-20&rft.volume=7&rft.issue=7&rft.spage=1378&rft.epage=1387&rft.pages=1378-1387&rft.issn=2472-3452&rft.eissn=2472-3452&rft_id=info:doi/10.1021/acsearthspacechem.3c00036&rft_dat=%3Cacs_cross%3Eb577634485%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true