Chemical Probes for Blocking of Influenza A M2 Wild-type and S31N Channels

We report on using the synthetic aminoadamantane-CH2-aryl derivatives 1–6 as sensitive probes for blocking M2 S31N and influenza A virus (IAV) M2 wild-type (WT) channels as well as virus replication in cell culture. The binding kinetics measured using electrophysiology (EP) for M2 S31N channel are v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS chemical biology 2020-09, Vol.15 (9), p.2331-2337
Hauptverfasser: Tzitzoglaki, Christina, McGuire, Kelly, Lagarias, Panagiotis, Konstantinidi, Athina, Hoffmann, Anja, Fokina, Natalie A, Ma, Chulong, Papanastasiou, Ioannis P, Schreiner, Peter R, Vázquez, Santiago, Schmidtke, Michaela, Wang, Jun, Busath, David D, Kolocouris, Antonios
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2337
container_issue 9
container_start_page 2331
container_title ACS chemical biology
container_volume 15
creator Tzitzoglaki, Christina
McGuire, Kelly
Lagarias, Panagiotis
Konstantinidi, Athina
Hoffmann, Anja
Fokina, Natalie A
Ma, Chulong
Papanastasiou, Ioannis P
Schreiner, Peter R
Vázquez, Santiago
Schmidtke, Michaela
Wang, Jun
Busath, David D
Kolocouris, Antonios
description We report on using the synthetic aminoadamantane-CH2-aryl derivatives 1–6 as sensitive probes for blocking M2 S31N and influenza A virus (IAV) M2 wild-type (WT) channels as well as virus replication in cell culture. The binding kinetics measured using electrophysiology (EP) for M2 S31N channel are very dependent on the length between the adamantane moiety and the first ring of the aryl headgroup realized in 2 and 3 and the girth and length of the adamantane adduct realized in 4 and 5. Study of 1–6 shows that, according to molecular dynamics (MD) simulations and molecular mechanics Poisson–Boltzmann surface area (MM/PBSA) calculations, all bind in the M2 S31N channel with the adamantyl group positioned between V27 and G34 and the aryl group projecting out of the channel with the phenyl (or isoxazole in 6) embedded in the V27 cluster. In this outward binding configuration, an elongation of the ligand by only one methylene in rimantadine 2 or using diamantane or triamantane instead of adamantane in 4 and 5, respectively, causes incomplete entry and facilitates exit, abolishing effective block compared to the amantadine derivatives 1 and 6. In the active M2 S31N blockers 1 and 6, the phenyl and isoxazolyl head groups achieve a deeper binding position and high k on/low k off and high k on/high k off rate constants, compared to inactive 2–5, which have much lower k on and higher k off. Compounds 1–5 block the M2 WT channel by binding in the longer area from V27–H37, in the inward orientation, with high k on and low k off rate constants. Infection of cell cultures by influenza virus containing M2 WT or M2 S31N is inhibited by 1–5 or 1–4 and 6, respectively. While 1 and 6 block infection through the M2 block mechanism in the S31N variant, 2–4 may block M2 S31N virus replication in cell culture through the lysosomotropic effect, just as chloroquine is thought to inhibit SARS-CoV-2 infection.
doi_str_mv 10.1021/acschembio.0c00553
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acschembio_0c00553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d189379204</sourcerecordid><originalsourceid>FETCH-LOGICAL-a386t-7d8100415d9b55e3b1ee58545a03a291cfc85464854f3f57557e7b4ca13e4623</originalsourceid><addsrcrecordid>eNp9kMlOwzAURS0EoqXwAyyQfyDFQ17iLEvEUFQGiUosI8exaUpqV3azKF-PUUvZsXmDdM_VexehS0rGlDB6LVVQC72qWzcmihAAfoSGFCBNRMHz48PMigE6C2FJSMozUZyiAWe5yBiIIXoso0OrZIdfvat1wMZ5fNM59dnaD-wMnlrT9dp-STzBTwy_t12TbLZrjaVt8Bunz7hcSGt1F87RiZFd0Bf7PkLzu9t5-ZDMXu6n5WSWSC6yTZI3gsZLKDRFDaB5TbUGASlIwiUrqDIqblkai-EGcoBc53WqJOU6zRgfIbazVd6F4LWp1r5dSb-tKKl-cqn-cqn2uUToaget-3qlmwPyG0QUjHeCCFdL13sbX_jP8RtfG25F</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Chemical Probes for Blocking of Influenza A M2 Wild-type and S31N Channels</title><source>MEDLINE</source><source>ACS Publications</source><creator>Tzitzoglaki, Christina ; McGuire, Kelly ; Lagarias, Panagiotis ; Konstantinidi, Athina ; Hoffmann, Anja ; Fokina, Natalie A ; Ma, Chulong ; Papanastasiou, Ioannis P ; Schreiner, Peter R ; Vázquez, Santiago ; Schmidtke, Michaela ; Wang, Jun ; Busath, David D ; Kolocouris, Antonios</creator><creatorcontrib>Tzitzoglaki, Christina ; McGuire, Kelly ; Lagarias, Panagiotis ; Konstantinidi, Athina ; Hoffmann, Anja ; Fokina, Natalie A ; Ma, Chulong ; Papanastasiou, Ioannis P ; Schreiner, Peter R ; Vázquez, Santiago ; Schmidtke, Michaela ; Wang, Jun ; Busath, David D ; Kolocouris, Antonios</creatorcontrib><description>We report on using the synthetic aminoadamantane-CH2-aryl derivatives 1–6 as sensitive probes for blocking M2 S31N and influenza A virus (IAV) M2 wild-type (WT) channels as well as virus replication in cell culture. The binding kinetics measured using electrophysiology (EP) for M2 S31N channel are very dependent on the length between the adamantane moiety and the first ring of the aryl headgroup realized in 2 and 3 and the girth and length of the adamantane adduct realized in 4 and 5. Study of 1–6 shows that, according to molecular dynamics (MD) simulations and molecular mechanics Poisson–Boltzmann surface area (MM/PBSA) calculations, all bind in the M2 S31N channel with the adamantyl group positioned between V27 and G34 and the aryl group projecting out of the channel with the phenyl (or isoxazole in 6) embedded in the V27 cluster. In this outward binding configuration, an elongation of the ligand by only one methylene in rimantadine 2 or using diamantane or triamantane instead of adamantane in 4 and 5, respectively, causes incomplete entry and facilitates exit, abolishing effective block compared to the amantadine derivatives 1 and 6. In the active M2 S31N blockers 1 and 6, the phenyl and isoxazolyl head groups achieve a deeper binding position and high k on/low k off and high k on/high k off rate constants, compared to inactive 2–5, which have much lower k on and higher k off. Compounds 1–5 block the M2 WT channel by binding in the longer area from V27–H37, in the inward orientation, with high k on and low k off rate constants. Infection of cell cultures by influenza virus containing M2 WT or M2 S31N is inhibited by 1–5 or 1–4 and 6, respectively. While 1 and 6 block infection through the M2 block mechanism in the S31N variant, 2–4 may block M2 S31N virus replication in cell culture through the lysosomotropic effect, just as chloroquine is thought to inhibit SARS-CoV-2 infection.</description><identifier>ISSN: 1554-8929</identifier><identifier>EISSN: 1554-8937</identifier><identifier>DOI: 10.1021/acschembio.0c00553</identifier><identifier>PMID: 32786258</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject><![CDATA[Adamantane - analogs & derivatives ; Adamantane - chemistry ; Adamantane - metabolism ; Adamantane - pharmacology ; Betacoronavirus - drug effects ; Binding Sites ; Cells, Cultured ; Chloroquine - pharmacology ; Coronavirus Infections - drug therapy ; Coronavirus Infections - prevention & control ; COVID-19 ; Genetic Variation ; Humans ; Influenza A virus - chemistry ; Influenza A virus - drug effects ; Influenza A virus - genetics ; Influenza, Human - drug therapy ; Influenza, Human - prevention & control ; Ion Channels - antagonists & inhibitors ; Kinetics ; Molecular Probes - chemistry ; Molecular Probes - metabolism ; Pandemics - prevention & control ; Pneumonia, Viral - drug therapy ; Pneumonia, Viral - prevention & control ; Protein Binding ; SARS-CoV-2 ; Structure-Activity Relationship ; Viral Matrix Proteins - antagonists & inhibitors ; Virus Replication - drug effects]]></subject><ispartof>ACS chemical biology, 2020-09, Vol.15 (9), p.2331-2337</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a386t-7d8100415d9b55e3b1ee58545a03a291cfc85464854f3f57557e7b4ca13e4623</citedby><cites>FETCH-LOGICAL-a386t-7d8100415d9b55e3b1ee58545a03a291cfc85464854f3f57557e7b4ca13e4623</cites><orcidid>0000-0002-9296-6026 ; 0000-0002-3608-5515 ; 0000-0002-4845-4621 ; 0000-0001-6974-2561 ; 0000-0001-6110-1903</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acschembio.0c00553$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acschembio.0c00553$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32786258$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tzitzoglaki, Christina</creatorcontrib><creatorcontrib>McGuire, Kelly</creatorcontrib><creatorcontrib>Lagarias, Panagiotis</creatorcontrib><creatorcontrib>Konstantinidi, Athina</creatorcontrib><creatorcontrib>Hoffmann, Anja</creatorcontrib><creatorcontrib>Fokina, Natalie A</creatorcontrib><creatorcontrib>Ma, Chulong</creatorcontrib><creatorcontrib>Papanastasiou, Ioannis P</creatorcontrib><creatorcontrib>Schreiner, Peter R</creatorcontrib><creatorcontrib>Vázquez, Santiago</creatorcontrib><creatorcontrib>Schmidtke, Michaela</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Busath, David D</creatorcontrib><creatorcontrib>Kolocouris, Antonios</creatorcontrib><title>Chemical Probes for Blocking of Influenza A M2 Wild-type and S31N Channels</title><title>ACS chemical biology</title><addtitle>ACS Chem. Biol</addtitle><description>We report on using the synthetic aminoadamantane-CH2-aryl derivatives 1–6 as sensitive probes for blocking M2 S31N and influenza A virus (IAV) M2 wild-type (WT) channels as well as virus replication in cell culture. The binding kinetics measured using electrophysiology (EP) for M2 S31N channel are very dependent on the length between the adamantane moiety and the first ring of the aryl headgroup realized in 2 and 3 and the girth and length of the adamantane adduct realized in 4 and 5. Study of 1–6 shows that, according to molecular dynamics (MD) simulations and molecular mechanics Poisson–Boltzmann surface area (MM/PBSA) calculations, all bind in the M2 S31N channel with the adamantyl group positioned between V27 and G34 and the aryl group projecting out of the channel with the phenyl (or isoxazole in 6) embedded in the V27 cluster. In this outward binding configuration, an elongation of the ligand by only one methylene in rimantadine 2 or using diamantane or triamantane instead of adamantane in 4 and 5, respectively, causes incomplete entry and facilitates exit, abolishing effective block compared to the amantadine derivatives 1 and 6. In the active M2 S31N blockers 1 and 6, the phenyl and isoxazolyl head groups achieve a deeper binding position and high k on/low k off and high k on/high k off rate constants, compared to inactive 2–5, which have much lower k on and higher k off. Compounds 1–5 block the M2 WT channel by binding in the longer area from V27–H37, in the inward orientation, with high k on and low k off rate constants. Infection of cell cultures by influenza virus containing M2 WT or M2 S31N is inhibited by 1–5 or 1–4 and 6, respectively. While 1 and 6 block infection through the M2 block mechanism in the S31N variant, 2–4 may block M2 S31N virus replication in cell culture through the lysosomotropic effect, just as chloroquine is thought to inhibit SARS-CoV-2 infection.</description><subject>Adamantane - analogs &amp; derivatives</subject><subject>Adamantane - chemistry</subject><subject>Adamantane - metabolism</subject><subject>Adamantane - pharmacology</subject><subject>Betacoronavirus - drug effects</subject><subject>Binding Sites</subject><subject>Cells, Cultured</subject><subject>Chloroquine - pharmacology</subject><subject>Coronavirus Infections - drug therapy</subject><subject>Coronavirus Infections - prevention &amp; control</subject><subject>COVID-19</subject><subject>Genetic Variation</subject><subject>Humans</subject><subject>Influenza A virus - chemistry</subject><subject>Influenza A virus - drug effects</subject><subject>Influenza A virus - genetics</subject><subject>Influenza, Human - drug therapy</subject><subject>Influenza, Human - prevention &amp; control</subject><subject>Ion Channels - antagonists &amp; inhibitors</subject><subject>Kinetics</subject><subject>Molecular Probes - chemistry</subject><subject>Molecular Probes - metabolism</subject><subject>Pandemics - prevention &amp; control</subject><subject>Pneumonia, Viral - drug therapy</subject><subject>Pneumonia, Viral - prevention &amp; control</subject><subject>Protein Binding</subject><subject>SARS-CoV-2</subject><subject>Structure-Activity Relationship</subject><subject>Viral Matrix Proteins - antagonists &amp; inhibitors</subject><subject>Virus Replication - drug effects</subject><issn>1554-8929</issn><issn>1554-8937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMlOwzAURS0EoqXwAyyQfyDFQ17iLEvEUFQGiUosI8exaUpqV3azKF-PUUvZsXmDdM_VexehS0rGlDB6LVVQC72qWzcmihAAfoSGFCBNRMHz48PMigE6C2FJSMozUZyiAWe5yBiIIXoso0OrZIdfvat1wMZ5fNM59dnaD-wMnlrT9dp-STzBTwy_t12TbLZrjaVt8Bunz7hcSGt1F87RiZFd0Bf7PkLzu9t5-ZDMXu6n5WSWSC6yTZI3gsZLKDRFDaB5TbUGASlIwiUrqDIqblkai-EGcoBc53WqJOU6zRgfIbazVd6F4LWp1r5dSb-tKKl-cqn-cqn2uUToaget-3qlmwPyG0QUjHeCCFdL13sbX_jP8RtfG25F</recordid><startdate>20200918</startdate><enddate>20200918</enddate><creator>Tzitzoglaki, Christina</creator><creator>McGuire, Kelly</creator><creator>Lagarias, Panagiotis</creator><creator>Konstantinidi, Athina</creator><creator>Hoffmann, Anja</creator><creator>Fokina, Natalie A</creator><creator>Ma, Chulong</creator><creator>Papanastasiou, Ioannis P</creator><creator>Schreiner, Peter R</creator><creator>Vázquez, Santiago</creator><creator>Schmidtke, Michaela</creator><creator>Wang, Jun</creator><creator>Busath, David D</creator><creator>Kolocouris, Antonios</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9296-6026</orcidid><orcidid>https://orcid.org/0000-0002-3608-5515</orcidid><orcidid>https://orcid.org/0000-0002-4845-4621</orcidid><orcidid>https://orcid.org/0000-0001-6974-2561</orcidid><orcidid>https://orcid.org/0000-0001-6110-1903</orcidid></search><sort><creationdate>20200918</creationdate><title>Chemical Probes for Blocking of Influenza A M2 Wild-type and S31N Channels</title><author>Tzitzoglaki, Christina ; McGuire, Kelly ; Lagarias, Panagiotis ; Konstantinidi, Athina ; Hoffmann, Anja ; Fokina, Natalie A ; Ma, Chulong ; Papanastasiou, Ioannis P ; Schreiner, Peter R ; Vázquez, Santiago ; Schmidtke, Michaela ; Wang, Jun ; Busath, David D ; Kolocouris, Antonios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a386t-7d8100415d9b55e3b1ee58545a03a291cfc85464854f3f57557e7b4ca13e4623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adamantane - analogs &amp; derivatives</topic><topic>Adamantane - chemistry</topic><topic>Adamantane - metabolism</topic><topic>Adamantane - pharmacology</topic><topic>Betacoronavirus - drug effects</topic><topic>Binding Sites</topic><topic>Cells, Cultured</topic><topic>Chloroquine - pharmacology</topic><topic>Coronavirus Infections - drug therapy</topic><topic>Coronavirus Infections - prevention &amp; control</topic><topic>COVID-19</topic><topic>Genetic Variation</topic><topic>Humans</topic><topic>Influenza A virus - chemistry</topic><topic>Influenza A virus - drug effects</topic><topic>Influenza A virus - genetics</topic><topic>Influenza, Human - drug therapy</topic><topic>Influenza, Human - prevention &amp; control</topic><topic>Ion Channels - antagonists &amp; inhibitors</topic><topic>Kinetics</topic><topic>Molecular Probes - chemistry</topic><topic>Molecular Probes - metabolism</topic><topic>Pandemics - prevention &amp; control</topic><topic>Pneumonia, Viral - drug therapy</topic><topic>Pneumonia, Viral - prevention &amp; control</topic><topic>Protein Binding</topic><topic>SARS-CoV-2</topic><topic>Structure-Activity Relationship</topic><topic>Viral Matrix Proteins - antagonists &amp; inhibitors</topic><topic>Virus Replication - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tzitzoglaki, Christina</creatorcontrib><creatorcontrib>McGuire, Kelly</creatorcontrib><creatorcontrib>Lagarias, Panagiotis</creatorcontrib><creatorcontrib>Konstantinidi, Athina</creatorcontrib><creatorcontrib>Hoffmann, Anja</creatorcontrib><creatorcontrib>Fokina, Natalie A</creatorcontrib><creatorcontrib>Ma, Chulong</creatorcontrib><creatorcontrib>Papanastasiou, Ioannis P</creatorcontrib><creatorcontrib>Schreiner, Peter R</creatorcontrib><creatorcontrib>Vázquez, Santiago</creatorcontrib><creatorcontrib>Schmidtke, Michaela</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Busath, David D</creatorcontrib><creatorcontrib>Kolocouris, Antonios</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tzitzoglaki, Christina</au><au>McGuire, Kelly</au><au>Lagarias, Panagiotis</au><au>Konstantinidi, Athina</au><au>Hoffmann, Anja</au><au>Fokina, Natalie A</au><au>Ma, Chulong</au><au>Papanastasiou, Ioannis P</au><au>Schreiner, Peter R</au><au>Vázquez, Santiago</au><au>Schmidtke, Michaela</au><au>Wang, Jun</au><au>Busath, David D</au><au>Kolocouris, Antonios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical Probes for Blocking of Influenza A M2 Wild-type and S31N Channels</atitle><jtitle>ACS chemical biology</jtitle><addtitle>ACS Chem. Biol</addtitle><date>2020-09-18</date><risdate>2020</risdate><volume>15</volume><issue>9</issue><spage>2331</spage><epage>2337</epage><pages>2331-2337</pages><issn>1554-8929</issn><eissn>1554-8937</eissn><abstract>We report on using the synthetic aminoadamantane-CH2-aryl derivatives 1–6 as sensitive probes for blocking M2 S31N and influenza A virus (IAV) M2 wild-type (WT) channels as well as virus replication in cell culture. The binding kinetics measured using electrophysiology (EP) for M2 S31N channel are very dependent on the length between the adamantane moiety and the first ring of the aryl headgroup realized in 2 and 3 and the girth and length of the adamantane adduct realized in 4 and 5. Study of 1–6 shows that, according to molecular dynamics (MD) simulations and molecular mechanics Poisson–Boltzmann surface area (MM/PBSA) calculations, all bind in the M2 S31N channel with the adamantyl group positioned between V27 and G34 and the aryl group projecting out of the channel with the phenyl (or isoxazole in 6) embedded in the V27 cluster. In this outward binding configuration, an elongation of the ligand by only one methylene in rimantadine 2 or using diamantane or triamantane instead of adamantane in 4 and 5, respectively, causes incomplete entry and facilitates exit, abolishing effective block compared to the amantadine derivatives 1 and 6. In the active M2 S31N blockers 1 and 6, the phenyl and isoxazolyl head groups achieve a deeper binding position and high k on/low k off and high k on/high k off rate constants, compared to inactive 2–5, which have much lower k on and higher k off. Compounds 1–5 block the M2 WT channel by binding in the longer area from V27–H37, in the inward orientation, with high k on and low k off rate constants. Infection of cell cultures by influenza virus containing M2 WT or M2 S31N is inhibited by 1–5 or 1–4 and 6, respectively. While 1 and 6 block infection through the M2 block mechanism in the S31N variant, 2–4 may block M2 S31N virus replication in cell culture through the lysosomotropic effect, just as chloroquine is thought to inhibit SARS-CoV-2 infection.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32786258</pmid><doi>10.1021/acschembio.0c00553</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9296-6026</orcidid><orcidid>https://orcid.org/0000-0002-3608-5515</orcidid><orcidid>https://orcid.org/0000-0002-4845-4621</orcidid><orcidid>https://orcid.org/0000-0001-6974-2561</orcidid><orcidid>https://orcid.org/0000-0001-6110-1903</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1554-8929
ispartof ACS chemical biology, 2020-09, Vol.15 (9), p.2331-2337
issn 1554-8929
1554-8937
language eng
recordid cdi_crossref_primary_10_1021_acschembio_0c00553
source MEDLINE; ACS Publications
subjects Adamantane - analogs & derivatives
Adamantane - chemistry
Adamantane - metabolism
Adamantane - pharmacology
Betacoronavirus - drug effects
Binding Sites
Cells, Cultured
Chloroquine - pharmacology
Coronavirus Infections - drug therapy
Coronavirus Infections - prevention & control
COVID-19
Genetic Variation
Humans
Influenza A virus - chemistry
Influenza A virus - drug effects
Influenza A virus - genetics
Influenza, Human - drug therapy
Influenza, Human - prevention & control
Ion Channels - antagonists & inhibitors
Kinetics
Molecular Probes - chemistry
Molecular Probes - metabolism
Pandemics - prevention & control
Pneumonia, Viral - drug therapy
Pneumonia, Viral - prevention & control
Protein Binding
SARS-CoV-2
Structure-Activity Relationship
Viral Matrix Proteins - antagonists & inhibitors
Virus Replication - drug effects
title Chemical Probes for Blocking of Influenza A M2 Wild-type and S31N Channels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A51%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20Probes%20for%20Blocking%20of%20Influenza%20A%20M2%20Wild-type%20and%20S31N%20Channels&rft.jtitle=ACS%20chemical%20biology&rft.au=Tzitzoglaki,%20Christina&rft.date=2020-09-18&rft.volume=15&rft.issue=9&rft.spage=2331&rft.epage=2337&rft.pages=2331-2337&rft.issn=1554-8929&rft.eissn=1554-8937&rft_id=info:doi/10.1021/acschembio.0c00553&rft_dat=%3Cacs_cross%3Ed189379204%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32786258&rfr_iscdi=true