A Practical and Sustainable Ni/Co-Free High-Energy Electrode Material: Nanostructured LiMnO 2

Ni/Co-free high-energy positive electrode materials are of great importance to ensure the sustainability of Li-ion battery production and its supply chain in addition to minimizing environmental impact. Here, nanostructured LiMnO with both orthorhombic/monoclinic layered domains is synthesized, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS central science 2024-09, Vol.10 (9), p.1718-1732
Hauptverfasser: Miyaoka, Yuka, Sato, Takahito, Oguro, Yuna, Kondo, Sayaka, Nakano, Koki, Nakayama, Masanobu, Ugata, Yosuke, Goonetilleke, Damian, Sharma, Neeraj, Glushenkov, Alexey M, Hiroi, Satoshi, Ohara, Koji, Takada, Koji, Fujii, Yasuhiro, Yabuuchi, Naoaki
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1732
container_issue 9
container_start_page 1718
container_title ACS central science
container_volume 10
creator Miyaoka, Yuka
Sato, Takahito
Oguro, Yuna
Kondo, Sayaka
Nakano, Koki
Nakayama, Masanobu
Ugata, Yosuke
Goonetilleke, Damian
Sharma, Neeraj
Glushenkov, Alexey M
Hiroi, Satoshi
Ohara, Koji
Takada, Koji
Fujii, Yasuhiro
Yabuuchi, Naoaki
description Ni/Co-free high-energy positive electrode materials are of great importance to ensure the sustainability of Li-ion battery production and its supply chain in addition to minimizing environmental impact. Here, nanostructured LiMnO with both orthorhombic/monoclinic layered domains is synthesized, and its lithium storage properties and mechanism are examined. High-energy mechanical milling is used to convert the metastable and nanosized LiMnO adopting the cation-disordered rocksalt structure to an optimal domain-segregated layered LiMnO . This positive electrode produces an energy density of 820 W h kg , achieved by harnessing a large reversible capacity with relatively small voltage hysteresis on electrochemical cycles. Moreover, voltage decay for cycling, as observed for Li-excess Mn-based electrode materials, is effectively mitigated. Furthermore, by determining the structure-property relationships of different LiMnO polymorphs, LiMnO with similar domain structure and surface area is successfully synthesized with an alternative and simpler method, without the metastable precursor and high-energy mechanical milling. The cyclability of domain-containing LiMnO is also improved with the use of a highly concentrated electrolyte coupled with a lithium phosphate coating due to the suppression of Mn dissolution. These findings maximize the possibility of the development of high-energy, low-cost, and practical rechargeable batteries made from sustainable and abundant Mn sources without Ni/Co.
doi_str_mv 10.1021/acscentsci.4c00578
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acscentsci_4c00578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>39345817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c667-bcd3977e5e405e90ba94581296851464cc82c578ad5725e37d400eeb9fa6ab0e3</originalsourceid><addsrcrecordid>eNpFkMtuwjAQRa2qVUGUH-ii8g8EHD_ipDuEoFTiUalsq2jiDNRVSJDtLPj7BkHp6s7mjO49hDzHbBQzHo_BeIN18MaOpGFM6fSO9LnQMtKZiu9vtxQ9MvT-hzEWyyRRXD-SnsiEVGms--RrQj8cmGANVBTqkn62PoCtoaiQru142kRzh0gXdv8dzWp0-xOdVWiCa0qkKwjoLFSvdA1144NrTWgdlnRpV_WG8ifysIPK4_CaA7Kdz7bTRbTcvL1PJ8vIJImOClOKTGtUKJnCjBWQndvxLElV11kak3LTDYRSaa5Q6FIyhlhkO0igYCgGhF_eGtd473CXH509gDvlMcvPtvJ_W_nVVge9XKBjWxywvCF_bsQv5HRn4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Practical and Sustainable Ni/Co-Free High-Energy Electrode Material: Nanostructured LiMnO 2</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>American Chemical Society (ACS) Open Access</source><source>PubMed Central</source><source>ProQuest Central</source><creator>Miyaoka, Yuka ; Sato, Takahito ; Oguro, Yuna ; Kondo, Sayaka ; Nakano, Koki ; Nakayama, Masanobu ; Ugata, Yosuke ; Goonetilleke, Damian ; Sharma, Neeraj ; Glushenkov, Alexey M ; Hiroi, Satoshi ; Ohara, Koji ; Takada, Koji ; Fujii, Yasuhiro ; Yabuuchi, Naoaki</creator><creatorcontrib>Miyaoka, Yuka ; Sato, Takahito ; Oguro, Yuna ; Kondo, Sayaka ; Nakano, Koki ; Nakayama, Masanobu ; Ugata, Yosuke ; Goonetilleke, Damian ; Sharma, Neeraj ; Glushenkov, Alexey M ; Hiroi, Satoshi ; Ohara, Koji ; Takada, Koji ; Fujii, Yasuhiro ; Yabuuchi, Naoaki</creatorcontrib><description>Ni/Co-free high-energy positive electrode materials are of great importance to ensure the sustainability of Li-ion battery production and its supply chain in addition to minimizing environmental impact. Here, nanostructured LiMnO with both orthorhombic/monoclinic layered domains is synthesized, and its lithium storage properties and mechanism are examined. High-energy mechanical milling is used to convert the metastable and nanosized LiMnO adopting the cation-disordered rocksalt structure to an optimal domain-segregated layered LiMnO . This positive electrode produces an energy density of 820 W h kg , achieved by harnessing a large reversible capacity with relatively small voltage hysteresis on electrochemical cycles. Moreover, voltage decay for cycling, as observed for Li-excess Mn-based electrode materials, is effectively mitigated. Furthermore, by determining the structure-property relationships of different LiMnO polymorphs, LiMnO with similar domain structure and surface area is successfully synthesized with an alternative and simpler method, without the metastable precursor and high-energy mechanical milling. The cyclability of domain-containing LiMnO is also improved with the use of a highly concentrated electrolyte coupled with a lithium phosphate coating due to the suppression of Mn dissolution. These findings maximize the possibility of the development of high-energy, low-cost, and practical rechargeable batteries made from sustainable and abundant Mn sources without Ni/Co.</description><identifier>ISSN: 2374-7943</identifier><identifier>EISSN: 2374-7951</identifier><identifier>DOI: 10.1021/acscentsci.4c00578</identifier><identifier>PMID: 39345817</identifier><language>eng</language><publisher>United States</publisher><ispartof>ACS central science, 2024-09, Vol.10 (9), p.1718-1732</ispartof><rights>2024 The Authors. Published by American Chemical Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c667-bcd3977e5e405e90ba94581296851464cc82c578ad5725e37d400eeb9fa6ab0e3</cites><orcidid>0000-0002-9404-5693 ; 0000-0002-8233-6725 ; 0000-0001-5058-6757 ; 0000-0002-5113-053X ; 0000-0002-4851-839X ; 0000-0003-1033-4787 ; 0000-0003-1197-6343</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39345817$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miyaoka, Yuka</creatorcontrib><creatorcontrib>Sato, Takahito</creatorcontrib><creatorcontrib>Oguro, Yuna</creatorcontrib><creatorcontrib>Kondo, Sayaka</creatorcontrib><creatorcontrib>Nakano, Koki</creatorcontrib><creatorcontrib>Nakayama, Masanobu</creatorcontrib><creatorcontrib>Ugata, Yosuke</creatorcontrib><creatorcontrib>Goonetilleke, Damian</creatorcontrib><creatorcontrib>Sharma, Neeraj</creatorcontrib><creatorcontrib>Glushenkov, Alexey M</creatorcontrib><creatorcontrib>Hiroi, Satoshi</creatorcontrib><creatorcontrib>Ohara, Koji</creatorcontrib><creatorcontrib>Takada, Koji</creatorcontrib><creatorcontrib>Fujii, Yasuhiro</creatorcontrib><creatorcontrib>Yabuuchi, Naoaki</creatorcontrib><title>A Practical and Sustainable Ni/Co-Free High-Energy Electrode Material: Nanostructured LiMnO 2</title><title>ACS central science</title><addtitle>ACS Cent Sci</addtitle><description>Ni/Co-free high-energy positive electrode materials are of great importance to ensure the sustainability of Li-ion battery production and its supply chain in addition to minimizing environmental impact. Here, nanostructured LiMnO with both orthorhombic/monoclinic layered domains is synthesized, and its lithium storage properties and mechanism are examined. High-energy mechanical milling is used to convert the metastable and nanosized LiMnO adopting the cation-disordered rocksalt structure to an optimal domain-segregated layered LiMnO . This positive electrode produces an energy density of 820 W h kg , achieved by harnessing a large reversible capacity with relatively small voltage hysteresis on electrochemical cycles. Moreover, voltage decay for cycling, as observed for Li-excess Mn-based electrode materials, is effectively mitigated. Furthermore, by determining the structure-property relationships of different LiMnO polymorphs, LiMnO with similar domain structure and surface area is successfully synthesized with an alternative and simpler method, without the metastable precursor and high-energy mechanical milling. The cyclability of domain-containing LiMnO is also improved with the use of a highly concentrated electrolyte coupled with a lithium phosphate coating due to the suppression of Mn dissolution. These findings maximize the possibility of the development of high-energy, low-cost, and practical rechargeable batteries made from sustainable and abundant Mn sources without Ni/Co.</description><issn>2374-7943</issn><issn>2374-7951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkMtuwjAQRa2qVUGUH-ii8g8EHD_ipDuEoFTiUalsq2jiDNRVSJDtLPj7BkHp6s7mjO49hDzHbBQzHo_BeIN18MaOpGFM6fSO9LnQMtKZiu9vtxQ9MvT-hzEWyyRRXD-SnsiEVGms--RrQj8cmGANVBTqkn62PoCtoaiQru142kRzh0gXdv8dzWp0-xOdVWiCa0qkKwjoLFSvdA1144NrTWgdlnRpV_WG8ifysIPK4_CaA7Kdz7bTRbTcvL1PJ8vIJImOClOKTGtUKJnCjBWQndvxLElV11kak3LTDYRSaa5Q6FIyhlhkO0igYCgGhF_eGtd473CXH509gDvlMcvPtvJ_W_nVVge9XKBjWxywvCF_bsQv5HRn4A</recordid><startdate>20240925</startdate><enddate>20240925</enddate><creator>Miyaoka, Yuka</creator><creator>Sato, Takahito</creator><creator>Oguro, Yuna</creator><creator>Kondo, Sayaka</creator><creator>Nakano, Koki</creator><creator>Nakayama, Masanobu</creator><creator>Ugata, Yosuke</creator><creator>Goonetilleke, Damian</creator><creator>Sharma, Neeraj</creator><creator>Glushenkov, Alexey M</creator><creator>Hiroi, Satoshi</creator><creator>Ohara, Koji</creator><creator>Takada, Koji</creator><creator>Fujii, Yasuhiro</creator><creator>Yabuuchi, Naoaki</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9404-5693</orcidid><orcidid>https://orcid.org/0000-0002-8233-6725</orcidid><orcidid>https://orcid.org/0000-0001-5058-6757</orcidid><orcidid>https://orcid.org/0000-0002-5113-053X</orcidid><orcidid>https://orcid.org/0000-0002-4851-839X</orcidid><orcidid>https://orcid.org/0000-0003-1033-4787</orcidid><orcidid>https://orcid.org/0000-0003-1197-6343</orcidid></search><sort><creationdate>20240925</creationdate><title>A Practical and Sustainable Ni/Co-Free High-Energy Electrode Material: Nanostructured LiMnO 2</title><author>Miyaoka, Yuka ; Sato, Takahito ; Oguro, Yuna ; Kondo, Sayaka ; Nakano, Koki ; Nakayama, Masanobu ; Ugata, Yosuke ; Goonetilleke, Damian ; Sharma, Neeraj ; Glushenkov, Alexey M ; Hiroi, Satoshi ; Ohara, Koji ; Takada, Koji ; Fujii, Yasuhiro ; Yabuuchi, Naoaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c667-bcd3977e5e405e90ba94581296851464cc82c578ad5725e37d400eeb9fa6ab0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miyaoka, Yuka</creatorcontrib><creatorcontrib>Sato, Takahito</creatorcontrib><creatorcontrib>Oguro, Yuna</creatorcontrib><creatorcontrib>Kondo, Sayaka</creatorcontrib><creatorcontrib>Nakano, Koki</creatorcontrib><creatorcontrib>Nakayama, Masanobu</creatorcontrib><creatorcontrib>Ugata, Yosuke</creatorcontrib><creatorcontrib>Goonetilleke, Damian</creatorcontrib><creatorcontrib>Sharma, Neeraj</creatorcontrib><creatorcontrib>Glushenkov, Alexey M</creatorcontrib><creatorcontrib>Hiroi, Satoshi</creatorcontrib><creatorcontrib>Ohara, Koji</creatorcontrib><creatorcontrib>Takada, Koji</creatorcontrib><creatorcontrib>Fujii, Yasuhiro</creatorcontrib><creatorcontrib>Yabuuchi, Naoaki</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS central science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miyaoka, Yuka</au><au>Sato, Takahito</au><au>Oguro, Yuna</au><au>Kondo, Sayaka</au><au>Nakano, Koki</au><au>Nakayama, Masanobu</au><au>Ugata, Yosuke</au><au>Goonetilleke, Damian</au><au>Sharma, Neeraj</au><au>Glushenkov, Alexey M</au><au>Hiroi, Satoshi</au><au>Ohara, Koji</au><au>Takada, Koji</au><au>Fujii, Yasuhiro</au><au>Yabuuchi, Naoaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Practical and Sustainable Ni/Co-Free High-Energy Electrode Material: Nanostructured LiMnO 2</atitle><jtitle>ACS central science</jtitle><addtitle>ACS Cent Sci</addtitle><date>2024-09-25</date><risdate>2024</risdate><volume>10</volume><issue>9</issue><spage>1718</spage><epage>1732</epage><pages>1718-1732</pages><issn>2374-7943</issn><eissn>2374-7951</eissn><abstract>Ni/Co-free high-energy positive electrode materials are of great importance to ensure the sustainability of Li-ion battery production and its supply chain in addition to minimizing environmental impact. Here, nanostructured LiMnO with both orthorhombic/monoclinic layered domains is synthesized, and its lithium storage properties and mechanism are examined. High-energy mechanical milling is used to convert the metastable and nanosized LiMnO adopting the cation-disordered rocksalt structure to an optimal domain-segregated layered LiMnO . This positive electrode produces an energy density of 820 W h kg , achieved by harnessing a large reversible capacity with relatively small voltage hysteresis on electrochemical cycles. Moreover, voltage decay for cycling, as observed for Li-excess Mn-based electrode materials, is effectively mitigated. Furthermore, by determining the structure-property relationships of different LiMnO polymorphs, LiMnO with similar domain structure and surface area is successfully synthesized with an alternative and simpler method, without the metastable precursor and high-energy mechanical milling. The cyclability of domain-containing LiMnO is also improved with the use of a highly concentrated electrolyte coupled with a lithium phosphate coating due to the suppression of Mn dissolution. These findings maximize the possibility of the development of high-energy, low-cost, and practical rechargeable batteries made from sustainable and abundant Mn sources without Ni/Co.</abstract><cop>United States</cop><pmid>39345817</pmid><doi>10.1021/acscentsci.4c00578</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9404-5693</orcidid><orcidid>https://orcid.org/0000-0002-8233-6725</orcidid><orcidid>https://orcid.org/0000-0001-5058-6757</orcidid><orcidid>https://orcid.org/0000-0002-5113-053X</orcidid><orcidid>https://orcid.org/0000-0002-4851-839X</orcidid><orcidid>https://orcid.org/0000-0003-1033-4787</orcidid><orcidid>https://orcid.org/0000-0003-1197-6343</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2374-7943
ispartof ACS central science, 2024-09, Vol.10 (9), p.1718-1732
issn 2374-7943
2374-7951
language eng
recordid cdi_crossref_primary_10_1021_acscentsci_4c00578
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; American Chemical Society (ACS) Open Access; PubMed Central; ProQuest Central
title A Practical and Sustainable Ni/Co-Free High-Energy Electrode Material: Nanostructured LiMnO 2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T23%3A58%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Practical%20and%20Sustainable%20Ni/Co-Free%20High-Energy%20Electrode%20Material:%20Nanostructured%20LiMnO%202&rft.jtitle=ACS%20central%20science&rft.au=Miyaoka,%20Yuka&rft.date=2024-09-25&rft.volume=10&rft.issue=9&rft.spage=1718&rft.epage=1732&rft.pages=1718-1732&rft.issn=2374-7943&rft.eissn=2374-7951&rft_id=info:doi/10.1021/acscentsci.4c00578&rft_dat=%3Cpubmed_cross%3E39345817%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/39345817&rfr_iscdi=true