Core–Shell Engineering of Pd–Ag Bimetallic Catalysts for Efficient Hydrogen Production from Formic Acid Decomposition

To develop high-performance bimetallic catalysts, fine control over both the ligand and strain effects of secondary elements on the catalytic function of primary elements is crucial. Here we introduce an approach to produce Pd–Ag bimetallic core–shell nanocatalysts with synergistic regulation of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS catalysis 2019-02, Vol.9 (2), p.819-826
Hauptverfasser: Choi, Bu-Seo, Song, Jaeeun, Song, Minjin, Goo, Bon Seung, Lee, Young Wook, Kim, Yena, Yang, Hyunwoo, Han, Sang Woo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 826
container_issue 2
container_start_page 819
container_title ACS catalysis
container_volume 9
creator Choi, Bu-Seo
Song, Jaeeun
Song, Minjin
Goo, Bon Seung
Lee, Young Wook
Kim, Yena
Yang, Hyunwoo
Han, Sang Woo
description To develop high-performance bimetallic catalysts, fine control over both the ligand and strain effects of secondary elements on the catalytic function of primary elements is crucial. Here we introduce an approach to produce Pd–Ag bimetallic core–shell nanocatalysts with synergistic regulation of the ligand and strain effects of Ag. Through precise core–shell engineering, (PdAg alloy core)@(ultrathin Pd shell) nanocrystals with controlled core compositions and shell thicknesses in addition to a well-defined octahedral morphology could be realized. The prepared octahedral PdAg@Pd core–shell nanocrystals exhibited pronounced catalytic performance toward hydrogen production from formic acid decomposition. The maximum catalytic activity was achieved with PdAg@Pd nanocrystals consisting of PdAg alloy cores with an average Pd/Ag atomic ratio of 3.5:1 and 1.1 atomic layer of Pd shells, which showed a record high turnover frequency of 21 500 h–1 at 50 °C. This catalytic function could be attributed to the optimized combination of the electronic promotion and lattice strain effects of Ag on Pd. We envision that the present work can provide a rational guideline for the design of improved catalysts for various important chemical and electrochemical reactions.
doi_str_mv 10.1021/acscatal.8b04414
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acscatal_8b04414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c909804869</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-b42eaef62d60d5f50c2601a6412c19925ab652a91a9bf2c81aec9222150836063</originalsourceid><addsrcrecordid>eNp1UEFOwzAQtBBIVKV3jn4AKbZrm-QYQkqRKlEJOEeOYwdXiV3Z6SE3_sAPeUldtUhc2MuuNDszuwPALUZzjAi-FzJIMYhuntaIUkwvwIRgxhJGF-zyz3wNZiFsUSzKePqAJmAsnFc_X99vn6rrYGlbY5XyxrbQabhpIpK38NH0Kqp3RsLiaDOGIUDtPCy1NtIoO8DV2HjXKgs33jV7ORhnofauh0vn-8jLpWngk5Ku37lgjvANuNKiC2p27lPwsSzfi1Wyfn1-KfJ1IkiKhqSmRAmlOWk4aphmSBKOsOAUE4mzjDBRc0ZEhkVWayJTLJTMCIkvo3TBEV9MATrpSu9C8EpXO2964ccKo-qYXvWbXnVOL1LuTpSIVFu39zYe-P_6AbNCdlo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Core–Shell Engineering of Pd–Ag Bimetallic Catalysts for Efficient Hydrogen Production from Formic Acid Decomposition</title><source>ACS Publications</source><creator>Choi, Bu-Seo ; Song, Jaeeun ; Song, Minjin ; Goo, Bon Seung ; Lee, Young Wook ; Kim, Yena ; Yang, Hyunwoo ; Han, Sang Woo</creator><creatorcontrib>Choi, Bu-Seo ; Song, Jaeeun ; Song, Minjin ; Goo, Bon Seung ; Lee, Young Wook ; Kim, Yena ; Yang, Hyunwoo ; Han, Sang Woo</creatorcontrib><description>To develop high-performance bimetallic catalysts, fine control over both the ligand and strain effects of secondary elements on the catalytic function of primary elements is crucial. Here we introduce an approach to produce Pd–Ag bimetallic core–shell nanocatalysts with synergistic regulation of the ligand and strain effects of Ag. Through precise core–shell engineering, (PdAg alloy core)@(ultrathin Pd shell) nanocrystals with controlled core compositions and shell thicknesses in addition to a well-defined octahedral morphology could be realized. The prepared octahedral PdAg@Pd core–shell nanocrystals exhibited pronounced catalytic performance toward hydrogen production from formic acid decomposition. The maximum catalytic activity was achieved with PdAg@Pd nanocrystals consisting of PdAg alloy cores with an average Pd/Ag atomic ratio of 3.5:1 and 1.1 atomic layer of Pd shells, which showed a record high turnover frequency of 21 500 h–1 at 50 °C. This catalytic function could be attributed to the optimized combination of the electronic promotion and lattice strain effects of Ag on Pd. We envision that the present work can provide a rational guideline for the design of improved catalysts for various important chemical and electrochemical reactions.</description><identifier>ISSN: 2155-5435</identifier><identifier>EISSN: 2155-5435</identifier><identifier>DOI: 10.1021/acscatal.8b04414</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS catalysis, 2019-02, Vol.9 (2), p.819-826</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a280t-b42eaef62d60d5f50c2601a6412c19925ab652a91a9bf2c81aec9222150836063</citedby><cites>FETCH-LOGICAL-a280t-b42eaef62d60d5f50c2601a6412c19925ab652a91a9bf2c81aec9222150836063</cites><orcidid>0000-0001-5406-5211</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acscatal.8b04414$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acscatal.8b04414$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Choi, Bu-Seo</creatorcontrib><creatorcontrib>Song, Jaeeun</creatorcontrib><creatorcontrib>Song, Minjin</creatorcontrib><creatorcontrib>Goo, Bon Seung</creatorcontrib><creatorcontrib>Lee, Young Wook</creatorcontrib><creatorcontrib>Kim, Yena</creatorcontrib><creatorcontrib>Yang, Hyunwoo</creatorcontrib><creatorcontrib>Han, Sang Woo</creatorcontrib><title>Core–Shell Engineering of Pd–Ag Bimetallic Catalysts for Efficient Hydrogen Production from Formic Acid Decomposition</title><title>ACS catalysis</title><addtitle>ACS Catal</addtitle><description>To develop high-performance bimetallic catalysts, fine control over both the ligand and strain effects of secondary elements on the catalytic function of primary elements is crucial. Here we introduce an approach to produce Pd–Ag bimetallic core–shell nanocatalysts with synergistic regulation of the ligand and strain effects of Ag. Through precise core–shell engineering, (PdAg alloy core)@(ultrathin Pd shell) nanocrystals with controlled core compositions and shell thicknesses in addition to a well-defined octahedral morphology could be realized. The prepared octahedral PdAg@Pd core–shell nanocrystals exhibited pronounced catalytic performance toward hydrogen production from formic acid decomposition. The maximum catalytic activity was achieved with PdAg@Pd nanocrystals consisting of PdAg alloy cores with an average Pd/Ag atomic ratio of 3.5:1 and 1.1 atomic layer of Pd shells, which showed a record high turnover frequency of 21 500 h–1 at 50 °C. This catalytic function could be attributed to the optimized combination of the electronic promotion and lattice strain effects of Ag on Pd. We envision that the present work can provide a rational guideline for the design of improved catalysts for various important chemical and electrochemical reactions.</description><issn>2155-5435</issn><issn>2155-5435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UEFOwzAQtBBIVKV3jn4AKbZrm-QYQkqRKlEJOEeOYwdXiV3Z6SE3_sAPeUldtUhc2MuuNDszuwPALUZzjAi-FzJIMYhuntaIUkwvwIRgxhJGF-zyz3wNZiFsUSzKePqAJmAsnFc_X99vn6rrYGlbY5XyxrbQabhpIpK38NH0Kqp3RsLiaDOGIUDtPCy1NtIoO8DV2HjXKgs33jV7ORhnofauh0vn-8jLpWngk5Ku37lgjvANuNKiC2p27lPwsSzfi1Wyfn1-KfJ1IkiKhqSmRAmlOWk4aphmSBKOsOAUE4mzjDBRc0ZEhkVWayJTLJTMCIkvo3TBEV9MATrpSu9C8EpXO2964ccKo-qYXvWbXnVOL1LuTpSIVFu39zYe-P_6AbNCdlo</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Choi, Bu-Seo</creator><creator>Song, Jaeeun</creator><creator>Song, Minjin</creator><creator>Goo, Bon Seung</creator><creator>Lee, Young Wook</creator><creator>Kim, Yena</creator><creator>Yang, Hyunwoo</creator><creator>Han, Sang Woo</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5406-5211</orcidid></search><sort><creationdate>20190201</creationdate><title>Core–Shell Engineering of Pd–Ag Bimetallic Catalysts for Efficient Hydrogen Production from Formic Acid Decomposition</title><author>Choi, Bu-Seo ; Song, Jaeeun ; Song, Minjin ; Goo, Bon Seung ; Lee, Young Wook ; Kim, Yena ; Yang, Hyunwoo ; Han, Sang Woo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-b42eaef62d60d5f50c2601a6412c19925ab652a91a9bf2c81aec9222150836063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Bu-Seo</creatorcontrib><creatorcontrib>Song, Jaeeun</creatorcontrib><creatorcontrib>Song, Minjin</creatorcontrib><creatorcontrib>Goo, Bon Seung</creatorcontrib><creatorcontrib>Lee, Young Wook</creatorcontrib><creatorcontrib>Kim, Yena</creatorcontrib><creatorcontrib>Yang, Hyunwoo</creatorcontrib><creatorcontrib>Han, Sang Woo</creatorcontrib><collection>CrossRef</collection><jtitle>ACS catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Bu-Seo</au><au>Song, Jaeeun</au><au>Song, Minjin</au><au>Goo, Bon Seung</au><au>Lee, Young Wook</au><au>Kim, Yena</au><au>Yang, Hyunwoo</au><au>Han, Sang Woo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Core–Shell Engineering of Pd–Ag Bimetallic Catalysts for Efficient Hydrogen Production from Formic Acid Decomposition</atitle><jtitle>ACS catalysis</jtitle><addtitle>ACS Catal</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>9</volume><issue>2</issue><spage>819</spage><epage>826</epage><pages>819-826</pages><issn>2155-5435</issn><eissn>2155-5435</eissn><abstract>To develop high-performance bimetallic catalysts, fine control over both the ligand and strain effects of secondary elements on the catalytic function of primary elements is crucial. Here we introduce an approach to produce Pd–Ag bimetallic core–shell nanocatalysts with synergistic regulation of the ligand and strain effects of Ag. Through precise core–shell engineering, (PdAg alloy core)@(ultrathin Pd shell) nanocrystals with controlled core compositions and shell thicknesses in addition to a well-defined octahedral morphology could be realized. The prepared octahedral PdAg@Pd core–shell nanocrystals exhibited pronounced catalytic performance toward hydrogen production from formic acid decomposition. The maximum catalytic activity was achieved with PdAg@Pd nanocrystals consisting of PdAg alloy cores with an average Pd/Ag atomic ratio of 3.5:1 and 1.1 atomic layer of Pd shells, which showed a record high turnover frequency of 21 500 h–1 at 50 °C. This catalytic function could be attributed to the optimized combination of the electronic promotion and lattice strain effects of Ag on Pd. We envision that the present work can provide a rational guideline for the design of improved catalysts for various important chemical and electrochemical reactions.</abstract><pub>American Chemical Society</pub><doi>10.1021/acscatal.8b04414</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5406-5211</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2155-5435
ispartof ACS catalysis, 2019-02, Vol.9 (2), p.819-826
issn 2155-5435
2155-5435
language eng
recordid cdi_crossref_primary_10_1021_acscatal_8b04414
source ACS Publications
title Core–Shell Engineering of Pd–Ag Bimetallic Catalysts for Efficient Hydrogen Production from Formic Acid Decomposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T23%3A37%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Core%E2%80%93Shell%20Engineering%20of%20Pd%E2%80%93Ag%20Bimetallic%20Catalysts%20for%20Efficient%20Hydrogen%20Production%20from%20Formic%20Acid%20Decomposition&rft.jtitle=ACS%20catalysis&rft.au=Choi,%20Bu-Seo&rft.date=2019-02-01&rft.volume=9&rft.issue=2&rft.spage=819&rft.epage=826&rft.pages=819-826&rft.issn=2155-5435&rft.eissn=2155-5435&rft_id=info:doi/10.1021/acscatal.8b04414&rft_dat=%3Cacs_cross%3Ec909804869%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true