Iron Carbidization on Thin-Film Silica and Silicon: A Near-Ambient-Pressure X‑ray Photoelectron Spectroscopy and Scanning Tunneling Microscopy Study
Model catalysts consisting of iron particles with similar size deposited on thin-film silica (Fe/SiO2) and on silicon (Fe/Si) were used to study iron carbidization in a CO atmosphere using in situ near-ambient-pressure X-ray photoelectron spectroscopy. Significant differences were observed for CO ad...
Gespeichert in:
Veröffentlicht in: | ACS catalysis 2018-08, Vol.8 (8), p.7326-7333 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7333 |
---|---|
container_issue | 8 |
container_start_page | 7326 |
container_title | ACS catalysis |
container_volume | 8 |
creator | Zhou, Xiong Mannie, Gilbère J. A Yin, Junqing Yu, Xin Weststrate, C. J Wen, Xiaodong Wu, Kai Yang, Yong Li, Yongwang Niemantsverdriet, J. W |
description | Model catalysts consisting of iron particles with similar size deposited on thin-film silica (Fe/SiO2) and on silicon (Fe/Si) were used to study iron carbidization in a CO atmosphere using in situ near-ambient-pressure X-ray photoelectron spectroscopy. Significant differences were observed for CO adsorption, CO dissociation, and iron carbidization when the support was changed from thin-film silica to silicon. Stronger adsorption of CO on Fe/Si than that on Fe/SiO2 was evident from the higher CO equilibrium coverage found at a given temperature in the presence of 1 mbar of CO gas. On thin-film silica, iron starts to carbidize at 150 °C, while the onset of carbidization is at 100 °C on the silicon support. The main reason for the different onset temperature for carbidization is the efficiency of removal of oxygen species after CO dissociation. On thin-film silica, oxygen species formed by CO dissociation block the iron surface until ∼150 °C, when CO2 formation removes surface oxygen. Instead, on the silicon support, oxygen species readily spill over to the silicon. As a consequence, oxygen removal is not rate-limiting anymore and carbidization of iron can proceed at a lower temperature. |
doi_str_mv | 10.1021/acscatal.8b02076 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acscatal_8b02076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b585978031</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-c389e90e3f1e39612cd5277e65339ed38792b02e96117fd843a9bc13176786913</originalsourceid><addsrcrecordid>eNp1UMFOwzAMjRBITLA7x3wAGUmzNi23aWIwacCkDYlblaYuy9SlU9Ieyolf4MIH8iWkdJO4YFnys-z3bD2ErhgdMRqwG6mckrUsR3FGAyqiEzQIWBiScMzD0z_4HA2d21If4zCKBR2gr7mtDJ5Km-lcv8ta-87neqMNmelyh1e61EpiafIeVuYWT_ATSEsmu0yDqcnSgnONBfz6_fFpZYuXm6quoARVd-Kr_S9wqtq3vY6SxmjzhteNMVB26FGr48aqbvL2Ep0VsnQwPNQL9DK7W08fyOL5fj6dLIgMYloTxeMEEgq8YMCTiAUqDwMhIAo5TyDnsUgC7wj4ERNFHo-5TDLFOBORiKOE8QtEe93uvLNQpHurd9K2KaNpZ216tDY9WOsp1z3FT9Jt1VjjH_x__QfjOX-_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Iron Carbidization on Thin-Film Silica and Silicon: A Near-Ambient-Pressure X‑ray Photoelectron Spectroscopy and Scanning Tunneling Microscopy Study</title><source>American Chemical Society Journals</source><creator>Zhou, Xiong ; Mannie, Gilbère J. A ; Yin, Junqing ; Yu, Xin ; Weststrate, C. J ; Wen, Xiaodong ; Wu, Kai ; Yang, Yong ; Li, Yongwang ; Niemantsverdriet, J. W</creator><creatorcontrib>Zhou, Xiong ; Mannie, Gilbère J. A ; Yin, Junqing ; Yu, Xin ; Weststrate, C. J ; Wen, Xiaodong ; Wu, Kai ; Yang, Yong ; Li, Yongwang ; Niemantsverdriet, J. W</creatorcontrib><description>Model catalysts consisting of iron particles with similar size deposited on thin-film silica (Fe/SiO2) and on silicon (Fe/Si) were used to study iron carbidization in a CO atmosphere using in situ near-ambient-pressure X-ray photoelectron spectroscopy. Significant differences were observed for CO adsorption, CO dissociation, and iron carbidization when the support was changed from thin-film silica to silicon. Stronger adsorption of CO on Fe/Si than that on Fe/SiO2 was evident from the higher CO equilibrium coverage found at a given temperature in the presence of 1 mbar of CO gas. On thin-film silica, iron starts to carbidize at 150 °C, while the onset of carbidization is at 100 °C on the silicon support. The main reason for the different onset temperature for carbidization is the efficiency of removal of oxygen species after CO dissociation. On thin-film silica, oxygen species formed by CO dissociation block the iron surface until ∼150 °C, when CO2 formation removes surface oxygen. Instead, on the silicon support, oxygen species readily spill over to the silicon. As a consequence, oxygen removal is not rate-limiting anymore and carbidization of iron can proceed at a lower temperature.</description><identifier>ISSN: 2155-5435</identifier><identifier>EISSN: 2155-5435</identifier><identifier>DOI: 10.1021/acscatal.8b02076</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS catalysis, 2018-08, Vol.8 (8), p.7326-7333</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a280t-c389e90e3f1e39612cd5277e65339ed38792b02e96117fd843a9bc13176786913</citedby><cites>FETCH-LOGICAL-a280t-c389e90e3f1e39612cd5277e65339ed38792b02e96117fd843a9bc13176786913</cites><orcidid>0000-0002-8990-5783 ; 0000-0001-5626-8581 ; 0000-0002-5016-0251 ; 0000-0002-8390-4034 ; 0000-0003-4346-166X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acscatal.8b02076$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acscatal.8b02076$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Zhou, Xiong</creatorcontrib><creatorcontrib>Mannie, Gilbère J. A</creatorcontrib><creatorcontrib>Yin, Junqing</creatorcontrib><creatorcontrib>Yu, Xin</creatorcontrib><creatorcontrib>Weststrate, C. J</creatorcontrib><creatorcontrib>Wen, Xiaodong</creatorcontrib><creatorcontrib>Wu, Kai</creatorcontrib><creatorcontrib>Yang, Yong</creatorcontrib><creatorcontrib>Li, Yongwang</creatorcontrib><creatorcontrib>Niemantsverdriet, J. W</creatorcontrib><title>Iron Carbidization on Thin-Film Silica and Silicon: A Near-Ambient-Pressure X‑ray Photoelectron Spectroscopy and Scanning Tunneling Microscopy Study</title><title>ACS catalysis</title><addtitle>ACS Catal</addtitle><description>Model catalysts consisting of iron particles with similar size deposited on thin-film silica (Fe/SiO2) and on silicon (Fe/Si) were used to study iron carbidization in a CO atmosphere using in situ near-ambient-pressure X-ray photoelectron spectroscopy. Significant differences were observed for CO adsorption, CO dissociation, and iron carbidization when the support was changed from thin-film silica to silicon. Stronger adsorption of CO on Fe/Si than that on Fe/SiO2 was evident from the higher CO equilibrium coverage found at a given temperature in the presence of 1 mbar of CO gas. On thin-film silica, iron starts to carbidize at 150 °C, while the onset of carbidization is at 100 °C on the silicon support. The main reason for the different onset temperature for carbidization is the efficiency of removal of oxygen species after CO dissociation. On thin-film silica, oxygen species formed by CO dissociation block the iron surface until ∼150 °C, when CO2 formation removes surface oxygen. Instead, on the silicon support, oxygen species readily spill over to the silicon. As a consequence, oxygen removal is not rate-limiting anymore and carbidization of iron can proceed at a lower temperature.</description><issn>2155-5435</issn><issn>2155-5435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UMFOwzAMjRBITLA7x3wAGUmzNi23aWIwacCkDYlblaYuy9SlU9Ieyolf4MIH8iWkdJO4YFnys-z3bD2ErhgdMRqwG6mckrUsR3FGAyqiEzQIWBiScMzD0z_4HA2d21If4zCKBR2gr7mtDJ5Km-lcv8ta-87neqMNmelyh1e61EpiafIeVuYWT_ATSEsmu0yDqcnSgnONBfz6_fFpZYuXm6quoARVd-Kr_S9wqtq3vY6SxmjzhteNMVB26FGr48aqbvL2Ep0VsnQwPNQL9DK7W08fyOL5fj6dLIgMYloTxeMEEgq8YMCTiAUqDwMhIAo5TyDnsUgC7wj4ERNFHo-5TDLFOBORiKOE8QtEe93uvLNQpHurd9K2KaNpZ216tDY9WOsp1z3FT9Jt1VjjH_x__QfjOX-_</recordid><startdate>20180803</startdate><enddate>20180803</enddate><creator>Zhou, Xiong</creator><creator>Mannie, Gilbère J. A</creator><creator>Yin, Junqing</creator><creator>Yu, Xin</creator><creator>Weststrate, C. J</creator><creator>Wen, Xiaodong</creator><creator>Wu, Kai</creator><creator>Yang, Yong</creator><creator>Li, Yongwang</creator><creator>Niemantsverdriet, J. W</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8990-5783</orcidid><orcidid>https://orcid.org/0000-0001-5626-8581</orcidid><orcidid>https://orcid.org/0000-0002-5016-0251</orcidid><orcidid>https://orcid.org/0000-0002-8390-4034</orcidid><orcidid>https://orcid.org/0000-0003-4346-166X</orcidid></search><sort><creationdate>20180803</creationdate><title>Iron Carbidization on Thin-Film Silica and Silicon: A Near-Ambient-Pressure X‑ray Photoelectron Spectroscopy and Scanning Tunneling Microscopy Study</title><author>Zhou, Xiong ; Mannie, Gilbère J. A ; Yin, Junqing ; Yu, Xin ; Weststrate, C. J ; Wen, Xiaodong ; Wu, Kai ; Yang, Yong ; Li, Yongwang ; Niemantsverdriet, J. W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-c389e90e3f1e39612cd5277e65339ed38792b02e96117fd843a9bc13176786913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Xiong</creatorcontrib><creatorcontrib>Mannie, Gilbère J. A</creatorcontrib><creatorcontrib>Yin, Junqing</creatorcontrib><creatorcontrib>Yu, Xin</creatorcontrib><creatorcontrib>Weststrate, C. J</creatorcontrib><creatorcontrib>Wen, Xiaodong</creatorcontrib><creatorcontrib>Wu, Kai</creatorcontrib><creatorcontrib>Yang, Yong</creatorcontrib><creatorcontrib>Li, Yongwang</creatorcontrib><creatorcontrib>Niemantsverdriet, J. W</creatorcontrib><collection>CrossRef</collection><jtitle>ACS catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Xiong</au><au>Mannie, Gilbère J. A</au><au>Yin, Junqing</au><au>Yu, Xin</au><au>Weststrate, C. J</au><au>Wen, Xiaodong</au><au>Wu, Kai</au><au>Yang, Yong</au><au>Li, Yongwang</au><au>Niemantsverdriet, J. W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iron Carbidization on Thin-Film Silica and Silicon: A Near-Ambient-Pressure X‑ray Photoelectron Spectroscopy and Scanning Tunneling Microscopy Study</atitle><jtitle>ACS catalysis</jtitle><addtitle>ACS Catal</addtitle><date>2018-08-03</date><risdate>2018</risdate><volume>8</volume><issue>8</issue><spage>7326</spage><epage>7333</epage><pages>7326-7333</pages><issn>2155-5435</issn><eissn>2155-5435</eissn><abstract>Model catalysts consisting of iron particles with similar size deposited on thin-film silica (Fe/SiO2) and on silicon (Fe/Si) were used to study iron carbidization in a CO atmosphere using in situ near-ambient-pressure X-ray photoelectron spectroscopy. Significant differences were observed for CO adsorption, CO dissociation, and iron carbidization when the support was changed from thin-film silica to silicon. Stronger adsorption of CO on Fe/Si than that on Fe/SiO2 was evident from the higher CO equilibrium coverage found at a given temperature in the presence of 1 mbar of CO gas. On thin-film silica, iron starts to carbidize at 150 °C, while the onset of carbidization is at 100 °C on the silicon support. The main reason for the different onset temperature for carbidization is the efficiency of removal of oxygen species after CO dissociation. On thin-film silica, oxygen species formed by CO dissociation block the iron surface until ∼150 °C, when CO2 formation removes surface oxygen. Instead, on the silicon support, oxygen species readily spill over to the silicon. As a consequence, oxygen removal is not rate-limiting anymore and carbidization of iron can proceed at a lower temperature.</abstract><pub>American Chemical Society</pub><doi>10.1021/acscatal.8b02076</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8990-5783</orcidid><orcidid>https://orcid.org/0000-0001-5626-8581</orcidid><orcidid>https://orcid.org/0000-0002-5016-0251</orcidid><orcidid>https://orcid.org/0000-0002-8390-4034</orcidid><orcidid>https://orcid.org/0000-0003-4346-166X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2155-5435 |
ispartof | ACS catalysis, 2018-08, Vol.8 (8), p.7326-7333 |
issn | 2155-5435 2155-5435 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acscatal_8b02076 |
source | American Chemical Society Journals |
title | Iron Carbidization on Thin-Film Silica and Silicon: A Near-Ambient-Pressure X‑ray Photoelectron Spectroscopy and Scanning Tunneling Microscopy Study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A47%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iron%20Carbidization%20on%20Thin-Film%20Silica%20and%20Silicon:%20A%20Near-Ambient-Pressure%20X%E2%80%91ray%20Photoelectron%20Spectroscopy%20and%20Scanning%20Tunneling%20Microscopy%20Study&rft.jtitle=ACS%20catalysis&rft.au=Zhou,%20Xiong&rft.date=2018-08-03&rft.volume=8&rft.issue=8&rft.spage=7326&rft.epage=7333&rft.pages=7326-7333&rft.issn=2155-5435&rft.eissn=2155-5435&rft_id=info:doi/10.1021/acscatal.8b02076&rft_dat=%3Cacs_cross%3Eb585978031%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |