Introducing Catalytic Diversity into Single-Site Chabazite Zeolites of Fixed Composition via Synthetic Control of Active Site Proximity
We report a synthesis–structure–function relation describing how different routes to crystallize single tetrahedral-site (T-site) zeolites of fixed composition lead to different arrangements of framework Al atoms and, in turn, of extraframework proton active site ensembles that markedly influence tu...
Gespeichert in:
Veröffentlicht in: | ACS catalysis 2017-10, Vol.7 (10), p.6663-6674 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6674 |
---|---|
container_issue | 10 |
container_start_page | 6663 |
container_title | ACS catalysis |
container_volume | 7 |
creator | Di Iorio, John R Nimlos, Claire T Gounder, Rajamani |
description | We report a synthesis–structure–function relation describing how different routes to crystallize single tetrahedral-site (T-site) zeolites of fixed composition lead to different arrangements of framework Al atoms and, in turn, of extraframework proton active site ensembles that markedly influence turnover rates of a Brønsted acid-catalyzed reaction. Specifically, synthetic routes are reported that result in systematic changes in the arrangement of aluminum atoms (Al–O(−Si-O) x –Al) in isolated (x > 2) and paired (x = 1, 2) configurations within chabazite (CHA) zeolite frameworks of effectively fixed composition (Si/Al = 14–17). Precursor solutions containing different structure-directing agents and aluminum sources crystallize CHA zeolites with one organic N,N,N-trimethyl-1-adamantylammonium cation occluded per CHA cage, and with amounts of occluded Na+ cations that increase linearly with paired framework Al content (0–44%). Ammonia and divalent cobalt ion titrations are used to quantify total and paired Brønsted acid sites, respectively, and normalize rates of methanol dehydration to dimethyl ether. First-order and zero-order methanol dehydration rate constants (per H+, 415 K) systematically increase with the fraction of paired protons in CHA zeolites and are ∼10× higher at paired protons. Such behavior reflects faster dissociative (surface methoxy-mediated) pathways that prevail at paired protons over slower associative (methanol dimer-mediated) pathways at isolated protons, consistent with in situ infrared spectra. These findings demonstrate that zeolites of fixed elemental composition, even when crystalline frameworks contain one unique T-site, can exhibit catalytic diversity when prepared via different synthetic routes that influence their atomic arrangements. |
doi_str_mv | 10.1021/acscatal.7b01273 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acscatal_7b01273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d008280133</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-c7a82f75a37b88a802772ec66a2d92fd6c6d3d03be5e7e26afe459d5030b45f33</originalsourceid><addsrcrecordid>eNp1kM9KAzEQxoMoWGrvHvMAbs0mm832WFarhYJC9eJlyeaPTdluSpKWbl_A1zZrK3hxLjMw8_2-4QPgNkXjFOH0ngsveODNmNUoxYxcgAFOKU1oRujln_kajLxfo1gZzQuGBuBr3gZn5U6Y9hOWPaMLRsAHs1fOm9BB0wYLl3HbqGRpgoLlitf82E8fyjaxe2g1nJmDkrC0m62NMmNbuDccLrs2rFQPLG3v0_SnUxEiHf7AXp09mE30uQFXmjdejc59CN5nj2_lc7J4eZqX00XCcYFCIhgvsGaUE1YXBS8QZgwrkeccywnWMhe5JBKRWlHFFM65VhmdSIoIqjOqCRkCdOIKZ713SldbZzbcdVWKqj7L6jfL6pxllNydJHFTre3OtfHB_8-_AUOge0s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Introducing Catalytic Diversity into Single-Site Chabazite Zeolites of Fixed Composition via Synthetic Control of Active Site Proximity</title><source>ACS Publications</source><creator>Di Iorio, John R ; Nimlos, Claire T ; Gounder, Rajamani</creator><creatorcontrib>Di Iorio, John R ; Nimlos, Claire T ; Gounder, Rajamani</creatorcontrib><description>We report a synthesis–structure–function relation describing how different routes to crystallize single tetrahedral-site (T-site) zeolites of fixed composition lead to different arrangements of framework Al atoms and, in turn, of extraframework proton active site ensembles that markedly influence turnover rates of a Brønsted acid-catalyzed reaction. Specifically, synthetic routes are reported that result in systematic changes in the arrangement of aluminum atoms (Al–O(−Si-O) x –Al) in isolated (x > 2) and paired (x = 1, 2) configurations within chabazite (CHA) zeolite frameworks of effectively fixed composition (Si/Al = 14–17). Precursor solutions containing different structure-directing agents and aluminum sources crystallize CHA zeolites with one organic N,N,N-trimethyl-1-adamantylammonium cation occluded per CHA cage, and with amounts of occluded Na+ cations that increase linearly with paired framework Al content (0–44%). Ammonia and divalent cobalt ion titrations are used to quantify total and paired Brønsted acid sites, respectively, and normalize rates of methanol dehydration to dimethyl ether. First-order and zero-order methanol dehydration rate constants (per H+, 415 K) systematically increase with the fraction of paired protons in CHA zeolites and are ∼10× higher at paired protons. Such behavior reflects faster dissociative (surface methoxy-mediated) pathways that prevail at paired protons over slower associative (methanol dimer-mediated) pathways at isolated protons, consistent with in situ infrared spectra. These findings demonstrate that zeolites of fixed elemental composition, even when crystalline frameworks contain one unique T-site, can exhibit catalytic diversity when prepared via different synthetic routes that influence their atomic arrangements.</description><identifier>ISSN: 2155-5435</identifier><identifier>EISSN: 2155-5435</identifier><identifier>DOI: 10.1021/acscatal.7b01273</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS catalysis, 2017-10, Vol.7 (10), p.6663-6674</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a280t-c7a82f75a37b88a802772ec66a2d92fd6c6d3d03be5e7e26afe459d5030b45f33</citedby><cites>FETCH-LOGICAL-a280t-c7a82f75a37b88a802772ec66a2d92fd6c6d3d03be5e7e26afe459d5030b45f33</cites><orcidid>0000-0002-7519-5100 ; 0000-0003-1347-534X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acscatal.7b01273$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acscatal.7b01273$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27074,27922,27923,56736,56786</link.rule.ids></links><search><creatorcontrib>Di Iorio, John R</creatorcontrib><creatorcontrib>Nimlos, Claire T</creatorcontrib><creatorcontrib>Gounder, Rajamani</creatorcontrib><title>Introducing Catalytic Diversity into Single-Site Chabazite Zeolites of Fixed Composition via Synthetic Control of Active Site Proximity</title><title>ACS catalysis</title><addtitle>ACS Catal</addtitle><description>We report a synthesis–structure–function relation describing how different routes to crystallize single tetrahedral-site (T-site) zeolites of fixed composition lead to different arrangements of framework Al atoms and, in turn, of extraframework proton active site ensembles that markedly influence turnover rates of a Brønsted acid-catalyzed reaction. Specifically, synthetic routes are reported that result in systematic changes in the arrangement of aluminum atoms (Al–O(−Si-O) x –Al) in isolated (x > 2) and paired (x = 1, 2) configurations within chabazite (CHA) zeolite frameworks of effectively fixed composition (Si/Al = 14–17). Precursor solutions containing different structure-directing agents and aluminum sources crystallize CHA zeolites with one organic N,N,N-trimethyl-1-adamantylammonium cation occluded per CHA cage, and with amounts of occluded Na+ cations that increase linearly with paired framework Al content (0–44%). Ammonia and divalent cobalt ion titrations are used to quantify total and paired Brønsted acid sites, respectively, and normalize rates of methanol dehydration to dimethyl ether. First-order and zero-order methanol dehydration rate constants (per H+, 415 K) systematically increase with the fraction of paired protons in CHA zeolites and are ∼10× higher at paired protons. Such behavior reflects faster dissociative (surface methoxy-mediated) pathways that prevail at paired protons over slower associative (methanol dimer-mediated) pathways at isolated protons, consistent with in situ infrared spectra. These findings demonstrate that zeolites of fixed elemental composition, even when crystalline frameworks contain one unique T-site, can exhibit catalytic diversity when prepared via different synthetic routes that influence their atomic arrangements.</description><issn>2155-5435</issn><issn>2155-5435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM9KAzEQxoMoWGrvHvMAbs0mm832WFarhYJC9eJlyeaPTdluSpKWbl_A1zZrK3hxLjMw8_2-4QPgNkXjFOH0ngsveODNmNUoxYxcgAFOKU1oRujln_kajLxfo1gZzQuGBuBr3gZn5U6Y9hOWPaMLRsAHs1fOm9BB0wYLl3HbqGRpgoLlitf82E8fyjaxe2g1nJmDkrC0m62NMmNbuDccLrs2rFQPLG3v0_SnUxEiHf7AXp09mE30uQFXmjdejc59CN5nj2_lc7J4eZqX00XCcYFCIhgvsGaUE1YXBS8QZgwrkeccywnWMhe5JBKRWlHFFM65VhmdSIoIqjOqCRkCdOIKZ713SldbZzbcdVWKqj7L6jfL6pxllNydJHFTre3OtfHB_8-_AUOge0s</recordid><startdate>20171006</startdate><enddate>20171006</enddate><creator>Di Iorio, John R</creator><creator>Nimlos, Claire T</creator><creator>Gounder, Rajamani</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7519-5100</orcidid><orcidid>https://orcid.org/0000-0003-1347-534X</orcidid></search><sort><creationdate>20171006</creationdate><title>Introducing Catalytic Diversity into Single-Site Chabazite Zeolites of Fixed Composition via Synthetic Control of Active Site Proximity</title><author>Di Iorio, John R ; Nimlos, Claire T ; Gounder, Rajamani</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-c7a82f75a37b88a802772ec66a2d92fd6c6d3d03be5e7e26afe459d5030b45f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Iorio, John R</creatorcontrib><creatorcontrib>Nimlos, Claire T</creatorcontrib><creatorcontrib>Gounder, Rajamani</creatorcontrib><collection>CrossRef</collection><jtitle>ACS catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Iorio, John R</au><au>Nimlos, Claire T</au><au>Gounder, Rajamani</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Introducing Catalytic Diversity into Single-Site Chabazite Zeolites of Fixed Composition via Synthetic Control of Active Site Proximity</atitle><jtitle>ACS catalysis</jtitle><addtitle>ACS Catal</addtitle><date>2017-10-06</date><risdate>2017</risdate><volume>7</volume><issue>10</issue><spage>6663</spage><epage>6674</epage><pages>6663-6674</pages><issn>2155-5435</issn><eissn>2155-5435</eissn><abstract>We report a synthesis–structure–function relation describing how different routes to crystallize single tetrahedral-site (T-site) zeolites of fixed composition lead to different arrangements of framework Al atoms and, in turn, of extraframework proton active site ensembles that markedly influence turnover rates of a Brønsted acid-catalyzed reaction. Specifically, synthetic routes are reported that result in systematic changes in the arrangement of aluminum atoms (Al–O(−Si-O) x –Al) in isolated (x > 2) and paired (x = 1, 2) configurations within chabazite (CHA) zeolite frameworks of effectively fixed composition (Si/Al = 14–17). Precursor solutions containing different structure-directing agents and aluminum sources crystallize CHA zeolites with one organic N,N,N-trimethyl-1-adamantylammonium cation occluded per CHA cage, and with amounts of occluded Na+ cations that increase linearly with paired framework Al content (0–44%). Ammonia and divalent cobalt ion titrations are used to quantify total and paired Brønsted acid sites, respectively, and normalize rates of methanol dehydration to dimethyl ether. First-order and zero-order methanol dehydration rate constants (per H+, 415 K) systematically increase with the fraction of paired protons in CHA zeolites and are ∼10× higher at paired protons. Such behavior reflects faster dissociative (surface methoxy-mediated) pathways that prevail at paired protons over slower associative (methanol dimer-mediated) pathways at isolated protons, consistent with in situ infrared spectra. These findings demonstrate that zeolites of fixed elemental composition, even when crystalline frameworks contain one unique T-site, can exhibit catalytic diversity when prepared via different synthetic routes that influence their atomic arrangements.</abstract><pub>American Chemical Society</pub><doi>10.1021/acscatal.7b01273</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7519-5100</orcidid><orcidid>https://orcid.org/0000-0003-1347-534X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2155-5435 |
ispartof | ACS catalysis, 2017-10, Vol.7 (10), p.6663-6674 |
issn | 2155-5435 2155-5435 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acscatal_7b01273 |
source | ACS Publications |
title | Introducing Catalytic Diversity into Single-Site Chabazite Zeolites of Fixed Composition via Synthetic Control of Active Site Proximity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T07%3A50%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Introducing%20Catalytic%20Diversity%20into%20Single-Site%20Chabazite%20Zeolites%20of%20Fixed%20Composition%20via%20Synthetic%20Control%20of%20Active%20Site%20Proximity&rft.jtitle=ACS%20catalysis&rft.au=Di%20Iorio,%20John%20R&rft.date=2017-10-06&rft.volume=7&rft.issue=10&rft.spage=6663&rft.epage=6674&rft.pages=6663-6674&rft.issn=2155-5435&rft.eissn=2155-5435&rft_id=info:doi/10.1021/acscatal.7b01273&rft_dat=%3Cacs_cross%3Ed008280133%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |