Pt-Loaded CoFe-Layered Double Hydroxides for Simultaneously Driving HER and HzOR

Hydrazine-assisted water electrolysis presents an energy-saving pathway for H2 production. However, due to the different electronic structure requirements for active metals in hydrogen evolution reaction (HER) and hydrazine oxidation reaction (HzOR) reactions, catalysts capable of simultaneously dri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS catalysis 2024-10, Vol.14 (19), p.14937-14946
Hauptverfasser: Yu, Tianrui, Liu, Guihao, Nie, Tianqi, Wu, Zhaohui, Song, Ziheng, Sun, Xiaoliang, Song, Yu-Fei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14946
container_issue 19
container_start_page 14937
container_title ACS catalysis
container_volume 14
creator Yu, Tianrui
Liu, Guihao
Nie, Tianqi
Wu, Zhaohui
Song, Ziheng
Sun, Xiaoliang
Song, Yu-Fei
description Hydrazine-assisted water electrolysis presents an energy-saving pathway for H2 production. However, due to the different electronic structure requirements for active metals in hydrogen evolution reaction (HER) and hydrazine oxidation reaction (HzOR) reactions, catalysts capable of simultaneously driving HER and HzOR are less studied. Herein, we employ an electrochemical deposition method to load 4.2 nm Pt nanoparticles onto CoFe-layered double hydroxides. The resultant Pt/CoFe/NF requires only 12.1 and 28.7 mV to achieve 50 and 100 mA cm–2 for HzOR and an ultralow overpotential of 16.5 mV with a Tafel slope of 31.4 mV dec–1 to achieve 10 mA cm–2 for HER. The Pt/CoFe/NF-based overall hydrazine splitting (OHzS) device can realize 10 and 100 mA cm–2 at low potential of 0.093 and 0.531 mV, respectively, and the Faradaic efficiency for both N2 and H2 generation reaches nearly 100%. Such HER and HzOR activities can be attributed to the electronic metal–support interaction (EMSI) between Pt and CoFe/NF, which modulates the d-band center of Pt to an optimal position, thereby balancing the adsorption of N2H4 molecules (ΔG *N2H4 = −2.27 eV) and the desorption of hydrogen (ΔG H* = −0.18 eV) by Pt/CoFe/NF. This work provides insights into the design of efficient bifunctional catalysts from the perspective of the electronic structure.
doi_str_mv 10.1021/acscatal.4c03881
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acscatal_4c03881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b771304165</sourcerecordid><originalsourceid>FETCH-LOGICAL-a163t-17aabf1bdb47be7224f2171c17d9374fa1d769caa3d7cb7a771127e35b6b95a33</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsNTePe4PMHUnm82mR-mHEQItVc9h9iOSkmZlNxHjrzfSCl6cyzvDzPsyPITcApsDi-EeddDYYTNPNONZBhdkEoMQkUi4uPzTX5NZCAc2ViLSTLIJ2e26qHBorKFLt7FRgYP147ByvWoszQfj3WdtbKCV8_S5PvZNh611fWgGuvL1R92-0Xy9p9gamn9t9zfkqsIm2NlZp-R1s35Z5lGxfXxaPhQRQsq7CCSiqkAZlUhlZRwnVQwSNEiz4DKpEIxMFxqRG6mVRCkBYmm5UKlaCOR8StgpV3sXgrdV-e7rI_qhBFb-QCl_oZRnKKPl7mQZN-XB9b4dH_z__Bv8Z2Vx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Pt-Loaded CoFe-Layered Double Hydroxides for Simultaneously Driving HER and HzOR</title><source>ACS Publications</source><creator>Yu, Tianrui ; Liu, Guihao ; Nie, Tianqi ; Wu, Zhaohui ; Song, Ziheng ; Sun, Xiaoliang ; Song, Yu-Fei</creator><creatorcontrib>Yu, Tianrui ; Liu, Guihao ; Nie, Tianqi ; Wu, Zhaohui ; Song, Ziheng ; Sun, Xiaoliang ; Song, Yu-Fei</creatorcontrib><description>Hydrazine-assisted water electrolysis presents an energy-saving pathway for H2 production. However, due to the different electronic structure requirements for active metals in hydrogen evolution reaction (HER) and hydrazine oxidation reaction (HzOR) reactions, catalysts capable of simultaneously driving HER and HzOR are less studied. Herein, we employ an electrochemical deposition method to load 4.2 nm Pt nanoparticles onto CoFe-layered double hydroxides. The resultant Pt/CoFe/NF requires only 12.1 and 28.7 mV to achieve 50 and 100 mA cm–2 for HzOR and an ultralow overpotential of 16.5 mV with a Tafel slope of 31.4 mV dec–1 to achieve 10 mA cm–2 for HER. The Pt/CoFe/NF-based overall hydrazine splitting (OHzS) device can realize 10 and 100 mA cm–2 at low potential of 0.093 and 0.531 mV, respectively, and the Faradaic efficiency for both N2 and H2 generation reaches nearly 100%. Such HER and HzOR activities can be attributed to the electronic metal–support interaction (EMSI) between Pt and CoFe/NF, which modulates the d-band center of Pt to an optimal position, thereby balancing the adsorption of N2H4 molecules (ΔG *N2H4 = −2.27 eV) and the desorption of hydrogen (ΔG H* = −0.18 eV) by Pt/CoFe/NF. This work provides insights into the design of efficient bifunctional catalysts from the perspective of the electronic structure.</description><identifier>ISSN: 2155-5435</identifier><identifier>EISSN: 2155-5435</identifier><identifier>DOI: 10.1021/acscatal.4c03881</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS catalysis, 2024-10, Vol.14 (19), p.14937-14946</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a163t-17aabf1bdb47be7224f2171c17d9374fa1d769caa3d7cb7a771127e35b6b95a33</cites><orcidid>0000-0003-1309-0626</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acscatal.4c03881$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acscatal.4c03881$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Yu, Tianrui</creatorcontrib><creatorcontrib>Liu, Guihao</creatorcontrib><creatorcontrib>Nie, Tianqi</creatorcontrib><creatorcontrib>Wu, Zhaohui</creatorcontrib><creatorcontrib>Song, Ziheng</creatorcontrib><creatorcontrib>Sun, Xiaoliang</creatorcontrib><creatorcontrib>Song, Yu-Fei</creatorcontrib><title>Pt-Loaded CoFe-Layered Double Hydroxides for Simultaneously Driving HER and HzOR</title><title>ACS catalysis</title><addtitle>ACS Catal</addtitle><description>Hydrazine-assisted water electrolysis presents an energy-saving pathway for H2 production. However, due to the different electronic structure requirements for active metals in hydrogen evolution reaction (HER) and hydrazine oxidation reaction (HzOR) reactions, catalysts capable of simultaneously driving HER and HzOR are less studied. Herein, we employ an electrochemical deposition method to load 4.2 nm Pt nanoparticles onto CoFe-layered double hydroxides. The resultant Pt/CoFe/NF requires only 12.1 and 28.7 mV to achieve 50 and 100 mA cm–2 for HzOR and an ultralow overpotential of 16.5 mV with a Tafel slope of 31.4 mV dec–1 to achieve 10 mA cm–2 for HER. The Pt/CoFe/NF-based overall hydrazine splitting (OHzS) device can realize 10 and 100 mA cm–2 at low potential of 0.093 and 0.531 mV, respectively, and the Faradaic efficiency for both N2 and H2 generation reaches nearly 100%. Such HER and HzOR activities can be attributed to the electronic metal–support interaction (EMSI) between Pt and CoFe/NF, which modulates the d-band center of Pt to an optimal position, thereby balancing the adsorption of N2H4 molecules (ΔG *N2H4 = −2.27 eV) and the desorption of hydrogen (ΔG H* = −0.18 eV) by Pt/CoFe/NF. This work provides insights into the design of efficient bifunctional catalysts from the perspective of the electronic structure.</description><issn>2155-5435</issn><issn>2155-5435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRsNTePe4PMHUnm82mR-mHEQItVc9h9iOSkmZlNxHjrzfSCl6cyzvDzPsyPITcApsDi-EeddDYYTNPNONZBhdkEoMQkUi4uPzTX5NZCAc2ViLSTLIJ2e26qHBorKFLt7FRgYP147ByvWoszQfj3WdtbKCV8_S5PvZNh611fWgGuvL1R92-0Xy9p9gamn9t9zfkqsIm2NlZp-R1s35Z5lGxfXxaPhQRQsq7CCSiqkAZlUhlZRwnVQwSNEiz4DKpEIxMFxqRG6mVRCkBYmm5UKlaCOR8StgpV3sXgrdV-e7rI_qhBFb-QCl_oZRnKKPl7mQZN-XB9b4dH_z__Bv8Z2Vx</recordid><startdate>20241004</startdate><enddate>20241004</enddate><creator>Yu, Tianrui</creator><creator>Liu, Guihao</creator><creator>Nie, Tianqi</creator><creator>Wu, Zhaohui</creator><creator>Song, Ziheng</creator><creator>Sun, Xiaoliang</creator><creator>Song, Yu-Fei</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1309-0626</orcidid></search><sort><creationdate>20241004</creationdate><title>Pt-Loaded CoFe-Layered Double Hydroxides for Simultaneously Driving HER and HzOR</title><author>Yu, Tianrui ; Liu, Guihao ; Nie, Tianqi ; Wu, Zhaohui ; Song, Ziheng ; Sun, Xiaoliang ; Song, Yu-Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a163t-17aabf1bdb47be7224f2171c17d9374fa1d769caa3d7cb7a771127e35b6b95a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Tianrui</creatorcontrib><creatorcontrib>Liu, Guihao</creatorcontrib><creatorcontrib>Nie, Tianqi</creatorcontrib><creatorcontrib>Wu, Zhaohui</creatorcontrib><creatorcontrib>Song, Ziheng</creatorcontrib><creatorcontrib>Sun, Xiaoliang</creatorcontrib><creatorcontrib>Song, Yu-Fei</creatorcontrib><collection>CrossRef</collection><jtitle>ACS catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Tianrui</au><au>Liu, Guihao</au><au>Nie, Tianqi</au><au>Wu, Zhaohui</au><au>Song, Ziheng</au><au>Sun, Xiaoliang</au><au>Song, Yu-Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pt-Loaded CoFe-Layered Double Hydroxides for Simultaneously Driving HER and HzOR</atitle><jtitle>ACS catalysis</jtitle><addtitle>ACS Catal</addtitle><date>2024-10-04</date><risdate>2024</risdate><volume>14</volume><issue>19</issue><spage>14937</spage><epage>14946</epage><pages>14937-14946</pages><issn>2155-5435</issn><eissn>2155-5435</eissn><abstract>Hydrazine-assisted water electrolysis presents an energy-saving pathway for H2 production. However, due to the different electronic structure requirements for active metals in hydrogen evolution reaction (HER) and hydrazine oxidation reaction (HzOR) reactions, catalysts capable of simultaneously driving HER and HzOR are less studied. Herein, we employ an electrochemical deposition method to load 4.2 nm Pt nanoparticles onto CoFe-layered double hydroxides. The resultant Pt/CoFe/NF requires only 12.1 and 28.7 mV to achieve 50 and 100 mA cm–2 for HzOR and an ultralow overpotential of 16.5 mV with a Tafel slope of 31.4 mV dec–1 to achieve 10 mA cm–2 for HER. The Pt/CoFe/NF-based overall hydrazine splitting (OHzS) device can realize 10 and 100 mA cm–2 at low potential of 0.093 and 0.531 mV, respectively, and the Faradaic efficiency for both N2 and H2 generation reaches nearly 100%. Such HER and HzOR activities can be attributed to the electronic metal–support interaction (EMSI) between Pt and CoFe/NF, which modulates the d-band center of Pt to an optimal position, thereby balancing the adsorption of N2H4 molecules (ΔG *N2H4 = −2.27 eV) and the desorption of hydrogen (ΔG H* = −0.18 eV) by Pt/CoFe/NF. This work provides insights into the design of efficient bifunctional catalysts from the perspective of the electronic structure.</abstract><pub>American Chemical Society</pub><doi>10.1021/acscatal.4c03881</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1309-0626</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2155-5435
ispartof ACS catalysis, 2024-10, Vol.14 (19), p.14937-14946
issn 2155-5435
2155-5435
language eng
recordid cdi_crossref_primary_10_1021_acscatal_4c03881
source ACS Publications
title Pt-Loaded CoFe-Layered Double Hydroxides for Simultaneously Driving HER and HzOR
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T00%3A38%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pt-Loaded%20CoFe-Layered%20Double%20Hydroxides%20for%20Simultaneously%20Driving%20HER%20and%20HzOR&rft.jtitle=ACS%20catalysis&rft.au=Yu,%20Tianrui&rft.date=2024-10-04&rft.volume=14&rft.issue=19&rft.spage=14937&rft.epage=14946&rft.pages=14937-14946&rft.issn=2155-5435&rft.eissn=2155-5435&rft_id=info:doi/10.1021/acscatal.4c03881&rft_dat=%3Cacs_cross%3Eb771304165%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true