Uncovering Electrochemical Methane Oxidation Mechanism through the In Situ Detection of Reaction Intermediates

The electrochemical partial oxidation of methane (CH4) to value-added chemicals under ambient conditions provides a solution for harnessing abundant natural gas resources. Here, we investigate α-Fe2O3 as a model catalyst to gain a mechanistic understanding of the electrochemical CH4 oxidation reacti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS catalysis 2024-07, Vol.14 (14), p.10614-10623
Hauptverfasser: Al-Attas, Tareq, Kannimuthu, Karthick, Khan, Mohd Adnan, Kibria, Md Golam
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10623
container_issue 14
container_start_page 10614
container_title ACS catalysis
container_volume 14
creator Al-Attas, Tareq
Kannimuthu, Karthick
Khan, Mohd Adnan
Kibria, Md Golam
description The electrochemical partial oxidation of methane (CH4) to value-added chemicals under ambient conditions provides a solution for harnessing abundant natural gas resources. Here, we investigate α-Fe2O3 as a model catalyst to gain a mechanistic understanding of the electrochemical CH4 oxidation reaction (eCH4OR). During chronoamperometric experiments, we obtain liquid products (formic acid, acetic acid, and acetone) with ∼6.5% total Faradaic efficiency at 2.3 V versus the reversible hydrogen electrode (VRHE). At lower potentials below 2.0 VRHE, non-Faradaic CH4 adsorption occurred, confirmed by in situ ATR-SEIRAS (attenuated total reflectance–surface-enhanced infrared absorption spectroscopy) and impedance spectroscopies. In addition to verifying the presence of the FeIVO species, in situ spectroelectrochemical measurements revealed that CH4 oxidation initiates via H-abstraction to form •OCH3 species. The reaction undergoes further oxidation steps, leading to formate. Coupling between •OCH3 and formate generates •OCOCH3 species. Further, C–C coupling between – COCH3 and – CH3 resulted in acetone formation. Real-time proton-transfer-reaction time-of-flight mass spectrometry (PTR-TOF-MS) confirms the proposed pathways. Based on these observations, we propose a mechanistic pathway for selective CH4 electrooxidation.
doi_str_mv 10.1021/acscatal.4c00675
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acscatal_4c00675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a929105191</sourcerecordid><originalsourceid>FETCH-LOGICAL-a163t-9a27c273ebb182e4b7ee669391054515ada4ba0e45a2310e58d2b04d475c22e43</originalsourceid><addsrcrecordid>eNp1UMFKAzEUDKJgqb17zAe4Nckmu-1RatVCpaD2vLzNvnZTdhNJUtG_b0orePFd5jFvZngMIbecjTkT_B500BChG0vNWFGqCzIQXKlMyVxd_tmvySiEHUsjVTEp2YDYtdXuC72xWzrvUEfvdIu90dDRV4wtWKSrb9NANM4mRifGhJ7G1rv9tk2IdGHpu4l7-ogxBRx1bkPfEE77wkb0PTYGIoYbcrWBLuDojEOyfpp_zF6y5ep5MXtYZsCLPGZTEKUWZY51zScCZV0iFsU0n3KmpOIKGpA1MJQKRM4ZqkkjaiYbWSotkj4fEnbK1d6F4HFTfXrTg_-pOKuOlVW_lVXnypLl7mRJl2rn9t6mB_-XHwC4jnFY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Uncovering Electrochemical Methane Oxidation Mechanism through the In Situ Detection of Reaction Intermediates</title><source>ACS Publications</source><creator>Al-Attas, Tareq ; Kannimuthu, Karthick ; Khan, Mohd Adnan ; Kibria, Md Golam</creator><creatorcontrib>Al-Attas, Tareq ; Kannimuthu, Karthick ; Khan, Mohd Adnan ; Kibria, Md Golam</creatorcontrib><description>The electrochemical partial oxidation of methane (CH4) to value-added chemicals under ambient conditions provides a solution for harnessing abundant natural gas resources. Here, we investigate α-Fe2O3 as a model catalyst to gain a mechanistic understanding of the electrochemical CH4 oxidation reaction (eCH4OR). During chronoamperometric experiments, we obtain liquid products (formic acid, acetic acid, and acetone) with ∼6.5% total Faradaic efficiency at 2.3 V versus the reversible hydrogen electrode (VRHE). At lower potentials below 2.0 VRHE, non-Faradaic CH4 adsorption occurred, confirmed by in situ ATR-SEIRAS (attenuated total reflectance–surface-enhanced infrared absorption spectroscopy) and impedance spectroscopies. In addition to verifying the presence of the FeIVO species, in situ spectroelectrochemical measurements revealed that CH4 oxidation initiates via H-abstraction to form •OCH3 species. The reaction undergoes further oxidation steps, leading to formate. Coupling between •OCH3 and formate generates •OCOCH3 species. Further, C–C coupling between – COCH3 and – CH3 resulted in acetone formation. Real-time proton-transfer-reaction time-of-flight mass spectrometry (PTR-TOF-MS) confirms the proposed pathways. Based on these observations, we propose a mechanistic pathway for selective CH4 electrooxidation.</description><identifier>ISSN: 2155-5435</identifier><identifier>EISSN: 2155-5435</identifier><identifier>DOI: 10.1021/acscatal.4c00675</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS catalysis, 2024-07, Vol.14 (14), p.10614-10623</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a163t-9a27c273ebb182e4b7ee669391054515ada4ba0e45a2310e58d2b04d475c22e43</cites><orcidid>0000-0003-3105-5576 ; 0000-0003-4305-735X ; 0000-0001-6280-6171</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acscatal.4c00675$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acscatal.4c00675$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Al-Attas, Tareq</creatorcontrib><creatorcontrib>Kannimuthu, Karthick</creatorcontrib><creatorcontrib>Khan, Mohd Adnan</creatorcontrib><creatorcontrib>Kibria, Md Golam</creatorcontrib><title>Uncovering Electrochemical Methane Oxidation Mechanism through the In Situ Detection of Reaction Intermediates</title><title>ACS catalysis</title><addtitle>ACS Catal</addtitle><description>The electrochemical partial oxidation of methane (CH4) to value-added chemicals under ambient conditions provides a solution for harnessing abundant natural gas resources. Here, we investigate α-Fe2O3 as a model catalyst to gain a mechanistic understanding of the electrochemical CH4 oxidation reaction (eCH4OR). During chronoamperometric experiments, we obtain liquid products (formic acid, acetic acid, and acetone) with ∼6.5% total Faradaic efficiency at 2.3 V versus the reversible hydrogen electrode (VRHE). At lower potentials below 2.0 VRHE, non-Faradaic CH4 adsorption occurred, confirmed by in situ ATR-SEIRAS (attenuated total reflectance–surface-enhanced infrared absorption spectroscopy) and impedance spectroscopies. In addition to verifying the presence of the FeIVO species, in situ spectroelectrochemical measurements revealed that CH4 oxidation initiates via H-abstraction to form •OCH3 species. The reaction undergoes further oxidation steps, leading to formate. Coupling between •OCH3 and formate generates •OCOCH3 species. Further, C–C coupling between – COCH3 and – CH3 resulted in acetone formation. Real-time proton-transfer-reaction time-of-flight mass spectrometry (PTR-TOF-MS) confirms the proposed pathways. Based on these observations, we propose a mechanistic pathway for selective CH4 electrooxidation.</description><issn>2155-5435</issn><issn>2155-5435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1UMFKAzEUDKJgqb17zAe4Nckmu-1RatVCpaD2vLzNvnZTdhNJUtG_b0orePFd5jFvZngMIbecjTkT_B500BChG0vNWFGqCzIQXKlMyVxd_tmvySiEHUsjVTEp2YDYtdXuC72xWzrvUEfvdIu90dDRV4wtWKSrb9NANM4mRifGhJ7G1rv9tk2IdGHpu4l7-ogxBRx1bkPfEE77wkb0PTYGIoYbcrWBLuDojEOyfpp_zF6y5ep5MXtYZsCLPGZTEKUWZY51zScCZV0iFsU0n3KmpOIKGpA1MJQKRM4ZqkkjaiYbWSotkj4fEnbK1d6F4HFTfXrTg_-pOKuOlVW_lVXnypLl7mRJl2rn9t6mB_-XHwC4jnFY</recordid><startdate>20240719</startdate><enddate>20240719</enddate><creator>Al-Attas, Tareq</creator><creator>Kannimuthu, Karthick</creator><creator>Khan, Mohd Adnan</creator><creator>Kibria, Md Golam</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3105-5576</orcidid><orcidid>https://orcid.org/0000-0003-4305-735X</orcidid><orcidid>https://orcid.org/0000-0001-6280-6171</orcidid></search><sort><creationdate>20240719</creationdate><title>Uncovering Electrochemical Methane Oxidation Mechanism through the In Situ Detection of Reaction Intermediates</title><author>Al-Attas, Tareq ; Kannimuthu, Karthick ; Khan, Mohd Adnan ; Kibria, Md Golam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a163t-9a27c273ebb182e4b7ee669391054515ada4ba0e45a2310e58d2b04d475c22e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-Attas, Tareq</creatorcontrib><creatorcontrib>Kannimuthu, Karthick</creatorcontrib><creatorcontrib>Khan, Mohd Adnan</creatorcontrib><creatorcontrib>Kibria, Md Golam</creatorcontrib><collection>CrossRef</collection><jtitle>ACS catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al-Attas, Tareq</au><au>Kannimuthu, Karthick</au><au>Khan, Mohd Adnan</au><au>Kibria, Md Golam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncovering Electrochemical Methane Oxidation Mechanism through the In Situ Detection of Reaction Intermediates</atitle><jtitle>ACS catalysis</jtitle><addtitle>ACS Catal</addtitle><date>2024-07-19</date><risdate>2024</risdate><volume>14</volume><issue>14</issue><spage>10614</spage><epage>10623</epage><pages>10614-10623</pages><issn>2155-5435</issn><eissn>2155-5435</eissn><abstract>The electrochemical partial oxidation of methane (CH4) to value-added chemicals under ambient conditions provides a solution for harnessing abundant natural gas resources. Here, we investigate α-Fe2O3 as a model catalyst to gain a mechanistic understanding of the electrochemical CH4 oxidation reaction (eCH4OR). During chronoamperometric experiments, we obtain liquid products (formic acid, acetic acid, and acetone) with ∼6.5% total Faradaic efficiency at 2.3 V versus the reversible hydrogen electrode (VRHE). At lower potentials below 2.0 VRHE, non-Faradaic CH4 adsorption occurred, confirmed by in situ ATR-SEIRAS (attenuated total reflectance–surface-enhanced infrared absorption spectroscopy) and impedance spectroscopies. In addition to verifying the presence of the FeIVO species, in situ spectroelectrochemical measurements revealed that CH4 oxidation initiates via H-abstraction to form •OCH3 species. The reaction undergoes further oxidation steps, leading to formate. Coupling between •OCH3 and formate generates •OCOCH3 species. Further, C–C coupling between – COCH3 and – CH3 resulted in acetone formation. Real-time proton-transfer-reaction time-of-flight mass spectrometry (PTR-TOF-MS) confirms the proposed pathways. Based on these observations, we propose a mechanistic pathway for selective CH4 electrooxidation.</abstract><pub>American Chemical Society</pub><doi>10.1021/acscatal.4c00675</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3105-5576</orcidid><orcidid>https://orcid.org/0000-0003-4305-735X</orcidid><orcidid>https://orcid.org/0000-0001-6280-6171</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2155-5435
ispartof ACS catalysis, 2024-07, Vol.14 (14), p.10614-10623
issn 2155-5435
2155-5435
language eng
recordid cdi_crossref_primary_10_1021_acscatal_4c00675
source ACS Publications
title Uncovering Electrochemical Methane Oxidation Mechanism through the In Situ Detection of Reaction Intermediates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T19%3A10%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncovering%20Electrochemical%20Methane%20Oxidation%20Mechanism%20through%20the%20In%20Situ%20Detection%20of%20Reaction%20Intermediates&rft.jtitle=ACS%20catalysis&rft.au=Al-Attas,%20Tareq&rft.date=2024-07-19&rft.volume=14&rft.issue=14&rft.spage=10614&rft.epage=10623&rft.pages=10614-10623&rft.issn=2155-5435&rft.eissn=2155-5435&rft_id=info:doi/10.1021/acscatal.4c00675&rft_dat=%3Cacs_cross%3Ea929105191%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true