Ultrathin Holey Pt–M Alloy Nanosheets via Sequential Kinetic–Thermodynamic Metal Reduction Control

Ultrathin two-dimensional (2D) metal nanosheets have attracted significant attention in the field of electrocatalysis. Herein, we present a rational synthetic approach mediated by sequential kinetic–thermodynamic metal reduction control for holey ultrathin Pt3M alloy nanosheets (Pt3M HU-NSs, where M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS catalysis 2024-03, Vol.14 (6), p.3756-3765
Hauptverfasser: Kim, Heon Chul, Pramadewandaru, Respati K., Kabiraz, Mrinal Kanti, Azizar, Ghufran Aulia Bin, Wahidah, Hafidatul, Kim, Youngmin, Lee, Su-Un, Chae, Ho-Jeong, Choi, Sang-Il, Hong, Jong Wook
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3765
container_issue 6
container_start_page 3756
container_title ACS catalysis
container_volume 14
creator Kim, Heon Chul
Pramadewandaru, Respati K.
Kabiraz, Mrinal Kanti
Azizar, Ghufran Aulia Bin
Wahidah, Hafidatul
Kim, Youngmin
Lee, Su-Un
Chae, Ho-Jeong
Choi, Sang-Il
Hong, Jong Wook
description Ultrathin two-dimensional (2D) metal nanosheets have attracted significant attention in the field of electrocatalysis. Herein, we present a rational synthetic approach mediated by sequential kinetic–thermodynamic metal reduction control for holey ultrathin Pt3M alloy nanosheets (Pt3M HU-NSs, where M = Ni, Co, Cu, Ir, Pd, Ru, Rh, Fe, or Mn) with a thickness of approximately 3 nm and abundant edge sites. The unique sequential kinetic–thermodynamic metal reduction control provides fine-tuning over the anisotropic 2D growth of Pt-based alloy nanostructures by restraining the three-dimensional growth of metals and stabilizing low-coordinated edge sites. The Pt3Ni HU-NSs display significantly enhanced oxygen reduction reaction activity and stability compared to other Pt3M HU-NSs, pure Pt HU-NSs, and state-of-the-art Pt/C catalysts, attributed to their distinctive morphology and composition. We believe that this synthesis strategy provides insights into the development of ultrathin 2D metal alloy structures with abundant edge sites that can be deployed to create advanced electrocatalysts.
doi_str_mv 10.1021/acscatal.3c05806
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acscatal_3c05806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c563148650</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-ba6596e350b60444a498fcab1f1b6a7d34ff524fd8d74d8e68f793819865a0ee3</originalsourceid><addsrcrecordid>eNp1kMFKAzEURYMoWLR7l_kAW5OZJJNZlqJWbFW0XQ9vMglNSRPNpMLs_Af_0C9xpBXc-Dbvwb33cTkIXVAypiSjV6BaBQncOFeESyKO0CCjnI84y_nxn_sUDdt2Q_phXMiCDJBZuRQhra3Hs-B0h5_S18fnAk-cCx1-AB_atdapxe8W8It-22mfLDh8b71OVvXe5VrHbWg6D1ur8EL3NfCzbnYq2eDxNPgUgztHJwZcq4eHfYZWN9fL6Ww0f7y9m07mI8gkSaMaBC-FzjmpBWGMASulUVBTQ2sBRZMzY3jGTCObgjVSC2mKMpe0lIID0To_Q2T_V8XQtlGb6jXaLcSuoqT6QVX9oqoOqPrI5T7SK9Um7KLvC_5v_waf73Cv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ultrathin Holey Pt–M Alloy Nanosheets via Sequential Kinetic–Thermodynamic Metal Reduction Control</title><source>ACS Publications</source><creator>Kim, Heon Chul ; Pramadewandaru, Respati K. ; Kabiraz, Mrinal Kanti ; Azizar, Ghufran Aulia Bin ; Wahidah, Hafidatul ; Kim, Youngmin ; Lee, Su-Un ; Chae, Ho-Jeong ; Choi, Sang-Il ; Hong, Jong Wook</creator><creatorcontrib>Kim, Heon Chul ; Pramadewandaru, Respati K. ; Kabiraz, Mrinal Kanti ; Azizar, Ghufran Aulia Bin ; Wahidah, Hafidatul ; Kim, Youngmin ; Lee, Su-Un ; Chae, Ho-Jeong ; Choi, Sang-Il ; Hong, Jong Wook</creatorcontrib><description>Ultrathin two-dimensional (2D) metal nanosheets have attracted significant attention in the field of electrocatalysis. Herein, we present a rational synthetic approach mediated by sequential kinetic–thermodynamic metal reduction control for holey ultrathin Pt3M alloy nanosheets (Pt3M HU-NSs, where M = Ni, Co, Cu, Ir, Pd, Ru, Rh, Fe, or Mn) with a thickness of approximately 3 nm and abundant edge sites. The unique sequential kinetic–thermodynamic metal reduction control provides fine-tuning over the anisotropic 2D growth of Pt-based alloy nanostructures by restraining the three-dimensional growth of metals and stabilizing low-coordinated edge sites. The Pt3Ni HU-NSs display significantly enhanced oxygen reduction reaction activity and stability compared to other Pt3M HU-NSs, pure Pt HU-NSs, and state-of-the-art Pt/C catalysts, attributed to their distinctive morphology and composition. We believe that this synthesis strategy provides insights into the development of ultrathin 2D metal alloy structures with abundant edge sites that can be deployed to create advanced electrocatalysts.</description><identifier>ISSN: 2155-5435</identifier><identifier>EISSN: 2155-5435</identifier><identifier>DOI: 10.1021/acscatal.3c05806</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS catalysis, 2024-03, Vol.14 (6), p.3756-3765</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a280t-ba6596e350b60444a498fcab1f1b6a7d34ff524fd8d74d8e68f793819865a0ee3</citedby><cites>FETCH-LOGICAL-a280t-ba6596e350b60444a498fcab1f1b6a7d34ff524fd8d74d8e68f793819865a0ee3</cites><orcidid>0000-0002-8394-1847 ; 0000-0002-3603-7329 ; 0000-0002-8280-3100 ; 0000-0002-6893-5270 ; 0000-0003-2617-2612</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acscatal.3c05806$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acscatal.3c05806$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids></links><search><creatorcontrib>Kim, Heon Chul</creatorcontrib><creatorcontrib>Pramadewandaru, Respati K.</creatorcontrib><creatorcontrib>Kabiraz, Mrinal Kanti</creatorcontrib><creatorcontrib>Azizar, Ghufran Aulia Bin</creatorcontrib><creatorcontrib>Wahidah, Hafidatul</creatorcontrib><creatorcontrib>Kim, Youngmin</creatorcontrib><creatorcontrib>Lee, Su-Un</creatorcontrib><creatorcontrib>Chae, Ho-Jeong</creatorcontrib><creatorcontrib>Choi, Sang-Il</creatorcontrib><creatorcontrib>Hong, Jong Wook</creatorcontrib><title>Ultrathin Holey Pt–M Alloy Nanosheets via Sequential Kinetic–Thermodynamic Metal Reduction Control</title><title>ACS catalysis</title><addtitle>ACS Catal</addtitle><description>Ultrathin two-dimensional (2D) metal nanosheets have attracted significant attention in the field of electrocatalysis. Herein, we present a rational synthetic approach mediated by sequential kinetic–thermodynamic metal reduction control for holey ultrathin Pt3M alloy nanosheets (Pt3M HU-NSs, where M = Ni, Co, Cu, Ir, Pd, Ru, Rh, Fe, or Mn) with a thickness of approximately 3 nm and abundant edge sites. The unique sequential kinetic–thermodynamic metal reduction control provides fine-tuning over the anisotropic 2D growth of Pt-based alloy nanostructures by restraining the three-dimensional growth of metals and stabilizing low-coordinated edge sites. The Pt3Ni HU-NSs display significantly enhanced oxygen reduction reaction activity and stability compared to other Pt3M HU-NSs, pure Pt HU-NSs, and state-of-the-art Pt/C catalysts, attributed to their distinctive morphology and composition. We believe that this synthesis strategy provides insights into the development of ultrathin 2D metal alloy structures with abundant edge sites that can be deployed to create advanced electrocatalysts.</description><issn>2155-5435</issn><issn>2155-5435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEURYMoWLR7l_kAW5OZJJNZlqJWbFW0XQ9vMglNSRPNpMLs_Af_0C9xpBXc-Dbvwb33cTkIXVAypiSjV6BaBQncOFeESyKO0CCjnI84y_nxn_sUDdt2Q_phXMiCDJBZuRQhra3Hs-B0h5_S18fnAk-cCx1-AB_atdapxe8W8It-22mfLDh8b71OVvXe5VrHbWg6D1ur8EL3NfCzbnYq2eDxNPgUgztHJwZcq4eHfYZWN9fL6Ww0f7y9m07mI8gkSaMaBC-FzjmpBWGMASulUVBTQ2sBRZMzY3jGTCObgjVSC2mKMpe0lIID0To_Q2T_V8XQtlGb6jXaLcSuoqT6QVX9oqoOqPrI5T7SK9Um7KLvC_5v_waf73Cv</recordid><startdate>20240315</startdate><enddate>20240315</enddate><creator>Kim, Heon Chul</creator><creator>Pramadewandaru, Respati K.</creator><creator>Kabiraz, Mrinal Kanti</creator><creator>Azizar, Ghufran Aulia Bin</creator><creator>Wahidah, Hafidatul</creator><creator>Kim, Youngmin</creator><creator>Lee, Su-Un</creator><creator>Chae, Ho-Jeong</creator><creator>Choi, Sang-Il</creator><creator>Hong, Jong Wook</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8394-1847</orcidid><orcidid>https://orcid.org/0000-0002-3603-7329</orcidid><orcidid>https://orcid.org/0000-0002-8280-3100</orcidid><orcidid>https://orcid.org/0000-0002-6893-5270</orcidid><orcidid>https://orcid.org/0000-0003-2617-2612</orcidid></search><sort><creationdate>20240315</creationdate><title>Ultrathin Holey Pt–M Alloy Nanosheets via Sequential Kinetic–Thermodynamic Metal Reduction Control</title><author>Kim, Heon Chul ; Pramadewandaru, Respati K. ; Kabiraz, Mrinal Kanti ; Azizar, Ghufran Aulia Bin ; Wahidah, Hafidatul ; Kim, Youngmin ; Lee, Su-Un ; Chae, Ho-Jeong ; Choi, Sang-Il ; Hong, Jong Wook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-ba6596e350b60444a498fcab1f1b6a7d34ff524fd8d74d8e68f793819865a0ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Heon Chul</creatorcontrib><creatorcontrib>Pramadewandaru, Respati K.</creatorcontrib><creatorcontrib>Kabiraz, Mrinal Kanti</creatorcontrib><creatorcontrib>Azizar, Ghufran Aulia Bin</creatorcontrib><creatorcontrib>Wahidah, Hafidatul</creatorcontrib><creatorcontrib>Kim, Youngmin</creatorcontrib><creatorcontrib>Lee, Su-Un</creatorcontrib><creatorcontrib>Chae, Ho-Jeong</creatorcontrib><creatorcontrib>Choi, Sang-Il</creatorcontrib><creatorcontrib>Hong, Jong Wook</creatorcontrib><collection>CrossRef</collection><jtitle>ACS catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Heon Chul</au><au>Pramadewandaru, Respati K.</au><au>Kabiraz, Mrinal Kanti</au><au>Azizar, Ghufran Aulia Bin</au><au>Wahidah, Hafidatul</au><au>Kim, Youngmin</au><au>Lee, Su-Un</au><au>Chae, Ho-Jeong</au><au>Choi, Sang-Il</au><au>Hong, Jong Wook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrathin Holey Pt–M Alloy Nanosheets via Sequential Kinetic–Thermodynamic Metal Reduction Control</atitle><jtitle>ACS catalysis</jtitle><addtitle>ACS Catal</addtitle><date>2024-03-15</date><risdate>2024</risdate><volume>14</volume><issue>6</issue><spage>3756</spage><epage>3765</epage><pages>3756-3765</pages><issn>2155-5435</issn><eissn>2155-5435</eissn><abstract>Ultrathin two-dimensional (2D) metal nanosheets have attracted significant attention in the field of electrocatalysis. Herein, we present a rational synthetic approach mediated by sequential kinetic–thermodynamic metal reduction control for holey ultrathin Pt3M alloy nanosheets (Pt3M HU-NSs, where M = Ni, Co, Cu, Ir, Pd, Ru, Rh, Fe, or Mn) with a thickness of approximately 3 nm and abundant edge sites. The unique sequential kinetic–thermodynamic metal reduction control provides fine-tuning over the anisotropic 2D growth of Pt-based alloy nanostructures by restraining the three-dimensional growth of metals and stabilizing low-coordinated edge sites. The Pt3Ni HU-NSs display significantly enhanced oxygen reduction reaction activity and stability compared to other Pt3M HU-NSs, pure Pt HU-NSs, and state-of-the-art Pt/C catalysts, attributed to their distinctive morphology and composition. We believe that this synthesis strategy provides insights into the development of ultrathin 2D metal alloy structures with abundant edge sites that can be deployed to create advanced electrocatalysts.</abstract><pub>American Chemical Society</pub><doi>10.1021/acscatal.3c05806</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8394-1847</orcidid><orcidid>https://orcid.org/0000-0002-3603-7329</orcidid><orcidid>https://orcid.org/0000-0002-8280-3100</orcidid><orcidid>https://orcid.org/0000-0002-6893-5270</orcidid><orcidid>https://orcid.org/0000-0003-2617-2612</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2155-5435
ispartof ACS catalysis, 2024-03, Vol.14 (6), p.3756-3765
issn 2155-5435
2155-5435
language eng
recordid cdi_crossref_primary_10_1021_acscatal_3c05806
source ACS Publications
title Ultrathin Holey Pt–M Alloy Nanosheets via Sequential Kinetic–Thermodynamic Metal Reduction Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A17%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrathin%20Holey%20Pt%E2%80%93M%20Alloy%20Nanosheets%20via%20Sequential%20Kinetic%E2%80%93Thermodynamic%20Metal%20Reduction%20Control&rft.jtitle=ACS%20catalysis&rft.au=Kim,%20Heon%20Chul&rft.date=2024-03-15&rft.volume=14&rft.issue=6&rft.spage=3756&rft.epage=3765&rft.pages=3756-3765&rft.issn=2155-5435&rft.eissn=2155-5435&rft_id=info:doi/10.1021/acscatal.3c05806&rft_dat=%3Cacs_cross%3Ec563148650%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true