Ultrathin Holey Pt–M Alloy Nanosheets via Sequential Kinetic–Thermodynamic Metal Reduction Control
Ultrathin two-dimensional (2D) metal nanosheets have attracted significant attention in the field of electrocatalysis. Herein, we present a rational synthetic approach mediated by sequential kinetic–thermodynamic metal reduction control for holey ultrathin Pt3M alloy nanosheets (Pt3M HU-NSs, where M...
Gespeichert in:
Veröffentlicht in: | ACS catalysis 2024-03, Vol.14 (6), p.3756-3765 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3765 |
---|---|
container_issue | 6 |
container_start_page | 3756 |
container_title | ACS catalysis |
container_volume | 14 |
creator | Kim, Heon Chul Pramadewandaru, Respati K. Kabiraz, Mrinal Kanti Azizar, Ghufran Aulia Bin Wahidah, Hafidatul Kim, Youngmin Lee, Su-Un Chae, Ho-Jeong Choi, Sang-Il Hong, Jong Wook |
description | Ultrathin two-dimensional (2D) metal nanosheets have attracted significant attention in the field of electrocatalysis. Herein, we present a rational synthetic approach mediated by sequential kinetic–thermodynamic metal reduction control for holey ultrathin Pt3M alloy nanosheets (Pt3M HU-NSs, where M = Ni, Co, Cu, Ir, Pd, Ru, Rh, Fe, or Mn) with a thickness of approximately 3 nm and abundant edge sites. The unique sequential kinetic–thermodynamic metal reduction control provides fine-tuning over the anisotropic 2D growth of Pt-based alloy nanostructures by restraining the three-dimensional growth of metals and stabilizing low-coordinated edge sites. The Pt3Ni HU-NSs display significantly enhanced oxygen reduction reaction activity and stability compared to other Pt3M HU-NSs, pure Pt HU-NSs, and state-of-the-art Pt/C catalysts, attributed to their distinctive morphology and composition. We believe that this synthesis strategy provides insights into the development of ultrathin 2D metal alloy structures with abundant edge sites that can be deployed to create advanced electrocatalysts. |
doi_str_mv | 10.1021/acscatal.3c05806 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acscatal_3c05806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c563148650</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-ba6596e350b60444a498fcab1f1b6a7d34ff524fd8d74d8e68f793819865a0ee3</originalsourceid><addsrcrecordid>eNp1kMFKAzEURYMoWLR7l_kAW5OZJJNZlqJWbFW0XQ9vMglNSRPNpMLs_Af_0C9xpBXc-Dbvwb33cTkIXVAypiSjV6BaBQncOFeESyKO0CCjnI84y_nxn_sUDdt2Q_phXMiCDJBZuRQhra3Hs-B0h5_S18fnAk-cCx1-AB_atdapxe8W8It-22mfLDh8b71OVvXe5VrHbWg6D1ur8EL3NfCzbnYq2eDxNPgUgztHJwZcq4eHfYZWN9fL6Ww0f7y9m07mI8gkSaMaBC-FzjmpBWGMASulUVBTQ2sBRZMzY3jGTCObgjVSC2mKMpe0lIID0To_Q2T_V8XQtlGb6jXaLcSuoqT6QVX9oqoOqPrI5T7SK9Um7KLvC_5v_waf73Cv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ultrathin Holey Pt–M Alloy Nanosheets via Sequential Kinetic–Thermodynamic Metal Reduction Control</title><source>ACS Publications</source><creator>Kim, Heon Chul ; Pramadewandaru, Respati K. ; Kabiraz, Mrinal Kanti ; Azizar, Ghufran Aulia Bin ; Wahidah, Hafidatul ; Kim, Youngmin ; Lee, Su-Un ; Chae, Ho-Jeong ; Choi, Sang-Il ; Hong, Jong Wook</creator><creatorcontrib>Kim, Heon Chul ; Pramadewandaru, Respati K. ; Kabiraz, Mrinal Kanti ; Azizar, Ghufran Aulia Bin ; Wahidah, Hafidatul ; Kim, Youngmin ; Lee, Su-Un ; Chae, Ho-Jeong ; Choi, Sang-Il ; Hong, Jong Wook</creatorcontrib><description>Ultrathin two-dimensional (2D) metal nanosheets have attracted significant attention in the field of electrocatalysis. Herein, we present a rational synthetic approach mediated by sequential kinetic–thermodynamic metal reduction control for holey ultrathin Pt3M alloy nanosheets (Pt3M HU-NSs, where M = Ni, Co, Cu, Ir, Pd, Ru, Rh, Fe, or Mn) with a thickness of approximately 3 nm and abundant edge sites. The unique sequential kinetic–thermodynamic metal reduction control provides fine-tuning over the anisotropic 2D growth of Pt-based alloy nanostructures by restraining the three-dimensional growth of metals and stabilizing low-coordinated edge sites. The Pt3Ni HU-NSs display significantly enhanced oxygen reduction reaction activity and stability compared to other Pt3M HU-NSs, pure Pt HU-NSs, and state-of-the-art Pt/C catalysts, attributed to their distinctive morphology and composition. We believe that this synthesis strategy provides insights into the development of ultrathin 2D metal alloy structures with abundant edge sites that can be deployed to create advanced electrocatalysts.</description><identifier>ISSN: 2155-5435</identifier><identifier>EISSN: 2155-5435</identifier><identifier>DOI: 10.1021/acscatal.3c05806</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS catalysis, 2024-03, Vol.14 (6), p.3756-3765</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a280t-ba6596e350b60444a498fcab1f1b6a7d34ff524fd8d74d8e68f793819865a0ee3</citedby><cites>FETCH-LOGICAL-a280t-ba6596e350b60444a498fcab1f1b6a7d34ff524fd8d74d8e68f793819865a0ee3</cites><orcidid>0000-0002-8394-1847 ; 0000-0002-3603-7329 ; 0000-0002-8280-3100 ; 0000-0002-6893-5270 ; 0000-0003-2617-2612</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acscatal.3c05806$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acscatal.3c05806$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids></links><search><creatorcontrib>Kim, Heon Chul</creatorcontrib><creatorcontrib>Pramadewandaru, Respati K.</creatorcontrib><creatorcontrib>Kabiraz, Mrinal Kanti</creatorcontrib><creatorcontrib>Azizar, Ghufran Aulia Bin</creatorcontrib><creatorcontrib>Wahidah, Hafidatul</creatorcontrib><creatorcontrib>Kim, Youngmin</creatorcontrib><creatorcontrib>Lee, Su-Un</creatorcontrib><creatorcontrib>Chae, Ho-Jeong</creatorcontrib><creatorcontrib>Choi, Sang-Il</creatorcontrib><creatorcontrib>Hong, Jong Wook</creatorcontrib><title>Ultrathin Holey Pt–M Alloy Nanosheets via Sequential Kinetic–Thermodynamic Metal Reduction Control</title><title>ACS catalysis</title><addtitle>ACS Catal</addtitle><description>Ultrathin two-dimensional (2D) metal nanosheets have attracted significant attention in the field of electrocatalysis. Herein, we present a rational synthetic approach mediated by sequential kinetic–thermodynamic metal reduction control for holey ultrathin Pt3M alloy nanosheets (Pt3M HU-NSs, where M = Ni, Co, Cu, Ir, Pd, Ru, Rh, Fe, or Mn) with a thickness of approximately 3 nm and abundant edge sites. The unique sequential kinetic–thermodynamic metal reduction control provides fine-tuning over the anisotropic 2D growth of Pt-based alloy nanostructures by restraining the three-dimensional growth of metals and stabilizing low-coordinated edge sites. The Pt3Ni HU-NSs display significantly enhanced oxygen reduction reaction activity and stability compared to other Pt3M HU-NSs, pure Pt HU-NSs, and state-of-the-art Pt/C catalysts, attributed to their distinctive morphology and composition. We believe that this synthesis strategy provides insights into the development of ultrathin 2D metal alloy structures with abundant edge sites that can be deployed to create advanced electrocatalysts.</description><issn>2155-5435</issn><issn>2155-5435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEURYMoWLR7l_kAW5OZJJNZlqJWbFW0XQ9vMglNSRPNpMLs_Af_0C9xpBXc-Dbvwb33cTkIXVAypiSjV6BaBQncOFeESyKO0CCjnI84y_nxn_sUDdt2Q_phXMiCDJBZuRQhra3Hs-B0h5_S18fnAk-cCx1-AB_atdapxe8W8It-22mfLDh8b71OVvXe5VrHbWg6D1ur8EL3NfCzbnYq2eDxNPgUgztHJwZcq4eHfYZWN9fL6Ww0f7y9m07mI8gkSaMaBC-FzjmpBWGMASulUVBTQ2sBRZMzY3jGTCObgjVSC2mKMpe0lIID0To_Q2T_V8XQtlGb6jXaLcSuoqT6QVX9oqoOqPrI5T7SK9Um7KLvC_5v_waf73Cv</recordid><startdate>20240315</startdate><enddate>20240315</enddate><creator>Kim, Heon Chul</creator><creator>Pramadewandaru, Respati K.</creator><creator>Kabiraz, Mrinal Kanti</creator><creator>Azizar, Ghufran Aulia Bin</creator><creator>Wahidah, Hafidatul</creator><creator>Kim, Youngmin</creator><creator>Lee, Su-Un</creator><creator>Chae, Ho-Jeong</creator><creator>Choi, Sang-Il</creator><creator>Hong, Jong Wook</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8394-1847</orcidid><orcidid>https://orcid.org/0000-0002-3603-7329</orcidid><orcidid>https://orcid.org/0000-0002-8280-3100</orcidid><orcidid>https://orcid.org/0000-0002-6893-5270</orcidid><orcidid>https://orcid.org/0000-0003-2617-2612</orcidid></search><sort><creationdate>20240315</creationdate><title>Ultrathin Holey Pt–M Alloy Nanosheets via Sequential Kinetic–Thermodynamic Metal Reduction Control</title><author>Kim, Heon Chul ; Pramadewandaru, Respati K. ; Kabiraz, Mrinal Kanti ; Azizar, Ghufran Aulia Bin ; Wahidah, Hafidatul ; Kim, Youngmin ; Lee, Su-Un ; Chae, Ho-Jeong ; Choi, Sang-Il ; Hong, Jong Wook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-ba6596e350b60444a498fcab1f1b6a7d34ff524fd8d74d8e68f793819865a0ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Heon Chul</creatorcontrib><creatorcontrib>Pramadewandaru, Respati K.</creatorcontrib><creatorcontrib>Kabiraz, Mrinal Kanti</creatorcontrib><creatorcontrib>Azizar, Ghufran Aulia Bin</creatorcontrib><creatorcontrib>Wahidah, Hafidatul</creatorcontrib><creatorcontrib>Kim, Youngmin</creatorcontrib><creatorcontrib>Lee, Su-Un</creatorcontrib><creatorcontrib>Chae, Ho-Jeong</creatorcontrib><creatorcontrib>Choi, Sang-Il</creatorcontrib><creatorcontrib>Hong, Jong Wook</creatorcontrib><collection>CrossRef</collection><jtitle>ACS catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Heon Chul</au><au>Pramadewandaru, Respati K.</au><au>Kabiraz, Mrinal Kanti</au><au>Azizar, Ghufran Aulia Bin</au><au>Wahidah, Hafidatul</au><au>Kim, Youngmin</au><au>Lee, Su-Un</au><au>Chae, Ho-Jeong</au><au>Choi, Sang-Il</au><au>Hong, Jong Wook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrathin Holey Pt–M Alloy Nanosheets via Sequential Kinetic–Thermodynamic Metal Reduction Control</atitle><jtitle>ACS catalysis</jtitle><addtitle>ACS Catal</addtitle><date>2024-03-15</date><risdate>2024</risdate><volume>14</volume><issue>6</issue><spage>3756</spage><epage>3765</epage><pages>3756-3765</pages><issn>2155-5435</issn><eissn>2155-5435</eissn><abstract>Ultrathin two-dimensional (2D) metal nanosheets have attracted significant attention in the field of electrocatalysis. Herein, we present a rational synthetic approach mediated by sequential kinetic–thermodynamic metal reduction control for holey ultrathin Pt3M alloy nanosheets (Pt3M HU-NSs, where M = Ni, Co, Cu, Ir, Pd, Ru, Rh, Fe, or Mn) with a thickness of approximately 3 nm and abundant edge sites. The unique sequential kinetic–thermodynamic metal reduction control provides fine-tuning over the anisotropic 2D growth of Pt-based alloy nanostructures by restraining the three-dimensional growth of metals and stabilizing low-coordinated edge sites. The Pt3Ni HU-NSs display significantly enhanced oxygen reduction reaction activity and stability compared to other Pt3M HU-NSs, pure Pt HU-NSs, and state-of-the-art Pt/C catalysts, attributed to their distinctive morphology and composition. We believe that this synthesis strategy provides insights into the development of ultrathin 2D metal alloy structures with abundant edge sites that can be deployed to create advanced electrocatalysts.</abstract><pub>American Chemical Society</pub><doi>10.1021/acscatal.3c05806</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8394-1847</orcidid><orcidid>https://orcid.org/0000-0002-3603-7329</orcidid><orcidid>https://orcid.org/0000-0002-8280-3100</orcidid><orcidid>https://orcid.org/0000-0002-6893-5270</orcidid><orcidid>https://orcid.org/0000-0003-2617-2612</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2155-5435 |
ispartof | ACS catalysis, 2024-03, Vol.14 (6), p.3756-3765 |
issn | 2155-5435 2155-5435 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acscatal_3c05806 |
source | ACS Publications |
title | Ultrathin Holey Pt–M Alloy Nanosheets via Sequential Kinetic–Thermodynamic Metal Reduction Control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A17%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrathin%20Holey%20Pt%E2%80%93M%20Alloy%20Nanosheets%20via%20Sequential%20Kinetic%E2%80%93Thermodynamic%20Metal%20Reduction%20Control&rft.jtitle=ACS%20catalysis&rft.au=Kim,%20Heon%20Chul&rft.date=2024-03-15&rft.volume=14&rft.issue=6&rft.spage=3756&rft.epage=3765&rft.pages=3756-3765&rft.issn=2155-5435&rft.eissn=2155-5435&rft_id=info:doi/10.1021/acscatal.3c05806&rft_dat=%3Cacs_cross%3Ec563148650%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |