Toward Superior Hydroisomerization Catalysts through Thermodynamic Optimization

The need to reduce the lifecycle greenhouse gas emissions of fuels and lubricants has renewed interest in hydroisomerization processes. Here it is shown how recognizing the signature of individual alkane hydrocracking pathways enables delineating changes to the alkane hydroisomerization and hydrocra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS catalysis 2023-05, Vol.13 (10), p.6710-6720
Hauptverfasser: Schmidt, Joel E., Smit, Berend, Chen, Cong-Yan, Xie, Dan, Maesen, Theo L. M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6720
container_issue 10
container_start_page 6710
container_title ACS catalysis
container_volume 13
creator Schmidt, Joel E.
Smit, Berend
Chen, Cong-Yan
Xie, Dan
Maesen, Theo L. M.
description The need to reduce the lifecycle greenhouse gas emissions of fuels and lubricants has renewed interest in hydroisomerization processes. Here it is shown how recognizing the signature of individual alkane hydrocracking pathways enables delineating changes to the alkane hydroisomerization and hydrocracking networks as a function of catalyst pore topology. Spacious pores allow indiscriminate access to both kinetically favored α,α,γ-trialkyl alkane hydrocracking pathways and thermodynamically favored α,α- and α,γ-dialkyl alkane hydrocracking pathways. Narrower pores enhance isomerization by slowing down access to the kinetically favored hydrocracking pathways. The narrowest pores enhance isomerization further by narrowing down the remaining hydrocracking pathways: MTT- and TON-type zeolites limit hydrocracking to only a low concentration of the few isomers that are commensurate with their respective topologies. This improved understanding of how catalyst pore topologies impact hydroconversion networks is guiding the design of more carbon efficient industrial hydroisomerization processes.
doi_str_mv 10.1021/acscatal.3c00391
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acscatal_3c00391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a220575223</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-3f22bd74efb6c8a3e3b674e55b2aaa4c85a9cdb146906fd4b3efee9b0d4376d03</originalsourceid><addsrcrecordid>eNp1UE1Lw0AUXETBUnv3mB9g6n7m4yhBrVDIwXhe3n7EpDTZsJsi8deb0ghefJf3hjczDIPQPcFbgil5BB00jHDcMo0xy8kVWlEiRCw4E9d_7lu0CeGA5-EiyVK8QmXlvsCb6P00WN86H-0m410bXDfDbxhb10fF2XoKY4jGxrvTZxNVjfWdM1MPXaujchjbbiHfoZsajsFulr1GHy_PVbGL9-XrW_G0j4FmeIxZTakyKbe1SnQGzDKVzEgIRQGA60xAro0iPMlxUhuumK2tzRU2nKWJwWyN8MVXexeCt7UcfNuBnyTB8tyJ_O1ELp3MkoeLZP7Igzv5fg74P_0Hkvlorg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Toward Superior Hydroisomerization Catalysts through Thermodynamic Optimization</title><source>ACS Journals: American Chemical Society Web Editions</source><creator>Schmidt, Joel E. ; Smit, Berend ; Chen, Cong-Yan ; Xie, Dan ; Maesen, Theo L. M.</creator><creatorcontrib>Schmidt, Joel E. ; Smit, Berend ; Chen, Cong-Yan ; Xie, Dan ; Maesen, Theo L. M.</creatorcontrib><description>The need to reduce the lifecycle greenhouse gas emissions of fuels and lubricants has renewed interest in hydroisomerization processes. Here it is shown how recognizing the signature of individual alkane hydrocracking pathways enables delineating changes to the alkane hydroisomerization and hydrocracking networks as a function of catalyst pore topology. Spacious pores allow indiscriminate access to both kinetically favored α,α,γ-trialkyl alkane hydrocracking pathways and thermodynamically favored α,α- and α,γ-dialkyl alkane hydrocracking pathways. Narrower pores enhance isomerization by slowing down access to the kinetically favored hydrocracking pathways. The narrowest pores enhance isomerization further by narrowing down the remaining hydrocracking pathways: MTT- and TON-type zeolites limit hydrocracking to only a low concentration of the few isomers that are commensurate with their respective topologies. This improved understanding of how catalyst pore topologies impact hydroconversion networks is guiding the design of more carbon efficient industrial hydroisomerization processes.</description><identifier>ISSN: 2155-5435</identifier><identifier>EISSN: 2155-5435</identifier><identifier>DOI: 10.1021/acscatal.3c00391</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS catalysis, 2023-05, Vol.13 (10), p.6710-6720</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a280t-3f22bd74efb6c8a3e3b674e55b2aaa4c85a9cdb146906fd4b3efee9b0d4376d03</citedby><cites>FETCH-LOGICAL-a280t-3f22bd74efb6c8a3e3b674e55b2aaa4c85a9cdb146906fd4b3efee9b0d4376d03</cites><orcidid>0000-0002-0039-2863 ; 0000-0003-4653-8562 ; 0000-0002-0137-3111</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acscatal.3c00391$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acscatal.3c00391$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2756,27067,27915,27916,56729,56779</link.rule.ids></links><search><creatorcontrib>Schmidt, Joel E.</creatorcontrib><creatorcontrib>Smit, Berend</creatorcontrib><creatorcontrib>Chen, Cong-Yan</creatorcontrib><creatorcontrib>Xie, Dan</creatorcontrib><creatorcontrib>Maesen, Theo L. M.</creatorcontrib><title>Toward Superior Hydroisomerization Catalysts through Thermodynamic Optimization</title><title>ACS catalysis</title><addtitle>ACS Catal</addtitle><description>The need to reduce the lifecycle greenhouse gas emissions of fuels and lubricants has renewed interest in hydroisomerization processes. Here it is shown how recognizing the signature of individual alkane hydrocracking pathways enables delineating changes to the alkane hydroisomerization and hydrocracking networks as a function of catalyst pore topology. Spacious pores allow indiscriminate access to both kinetically favored α,α,γ-trialkyl alkane hydrocracking pathways and thermodynamically favored α,α- and α,γ-dialkyl alkane hydrocracking pathways. Narrower pores enhance isomerization by slowing down access to the kinetically favored hydrocracking pathways. The narrowest pores enhance isomerization further by narrowing down the remaining hydrocracking pathways: MTT- and TON-type zeolites limit hydrocracking to only a low concentration of the few isomers that are commensurate with their respective topologies. This improved understanding of how catalyst pore topologies impact hydroconversion networks is guiding the design of more carbon efficient industrial hydroisomerization processes.</description><issn>2155-5435</issn><issn>2155-5435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UE1Lw0AUXETBUnv3mB9g6n7m4yhBrVDIwXhe3n7EpDTZsJsi8deb0ghefJf3hjczDIPQPcFbgil5BB00jHDcMo0xy8kVWlEiRCw4E9d_7lu0CeGA5-EiyVK8QmXlvsCb6P00WN86H-0m410bXDfDbxhb10fF2XoKY4jGxrvTZxNVjfWdM1MPXaujchjbbiHfoZsajsFulr1GHy_PVbGL9-XrW_G0j4FmeIxZTakyKbe1SnQGzDKVzEgIRQGA60xAro0iPMlxUhuumK2tzRU2nKWJwWyN8MVXexeCt7UcfNuBnyTB8tyJ_O1ELp3MkoeLZP7Igzv5fg74P_0Hkvlorg</recordid><startdate>20230519</startdate><enddate>20230519</enddate><creator>Schmidt, Joel E.</creator><creator>Smit, Berend</creator><creator>Chen, Cong-Yan</creator><creator>Xie, Dan</creator><creator>Maesen, Theo L. M.</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0039-2863</orcidid><orcidid>https://orcid.org/0000-0003-4653-8562</orcidid><orcidid>https://orcid.org/0000-0002-0137-3111</orcidid></search><sort><creationdate>20230519</creationdate><title>Toward Superior Hydroisomerization Catalysts through Thermodynamic Optimization</title><author>Schmidt, Joel E. ; Smit, Berend ; Chen, Cong-Yan ; Xie, Dan ; Maesen, Theo L. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-3f22bd74efb6c8a3e3b674e55b2aaa4c85a9cdb146906fd4b3efee9b0d4376d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmidt, Joel E.</creatorcontrib><creatorcontrib>Smit, Berend</creatorcontrib><creatorcontrib>Chen, Cong-Yan</creatorcontrib><creatorcontrib>Xie, Dan</creatorcontrib><creatorcontrib>Maesen, Theo L. M.</creatorcontrib><collection>CrossRef</collection><jtitle>ACS catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmidt, Joel E.</au><au>Smit, Berend</au><au>Chen, Cong-Yan</au><au>Xie, Dan</au><au>Maesen, Theo L. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Superior Hydroisomerization Catalysts through Thermodynamic Optimization</atitle><jtitle>ACS catalysis</jtitle><addtitle>ACS Catal</addtitle><date>2023-05-19</date><risdate>2023</risdate><volume>13</volume><issue>10</issue><spage>6710</spage><epage>6720</epage><pages>6710-6720</pages><issn>2155-5435</issn><eissn>2155-5435</eissn><abstract>The need to reduce the lifecycle greenhouse gas emissions of fuels and lubricants has renewed interest in hydroisomerization processes. Here it is shown how recognizing the signature of individual alkane hydrocracking pathways enables delineating changes to the alkane hydroisomerization and hydrocracking networks as a function of catalyst pore topology. Spacious pores allow indiscriminate access to both kinetically favored α,α,γ-trialkyl alkane hydrocracking pathways and thermodynamically favored α,α- and α,γ-dialkyl alkane hydrocracking pathways. Narrower pores enhance isomerization by slowing down access to the kinetically favored hydrocracking pathways. The narrowest pores enhance isomerization further by narrowing down the remaining hydrocracking pathways: MTT- and TON-type zeolites limit hydrocracking to only a low concentration of the few isomers that are commensurate with their respective topologies. This improved understanding of how catalyst pore topologies impact hydroconversion networks is guiding the design of more carbon efficient industrial hydroisomerization processes.</abstract><pub>American Chemical Society</pub><doi>10.1021/acscatal.3c00391</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0039-2863</orcidid><orcidid>https://orcid.org/0000-0003-4653-8562</orcidid><orcidid>https://orcid.org/0000-0002-0137-3111</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2155-5435
ispartof ACS catalysis, 2023-05, Vol.13 (10), p.6710-6720
issn 2155-5435
2155-5435
language eng
recordid cdi_crossref_primary_10_1021_acscatal_3c00391
source ACS Journals: American Chemical Society Web Editions
title Toward Superior Hydroisomerization Catalysts through Thermodynamic Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T17%3A35%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Superior%20Hydroisomerization%20Catalysts%20through%20Thermodynamic%20Optimization&rft.jtitle=ACS%20catalysis&rft.au=Schmidt,%20Joel%20E.&rft.date=2023-05-19&rft.volume=13&rft.issue=10&rft.spage=6710&rft.epage=6720&rft.pages=6710-6720&rft.issn=2155-5435&rft.eissn=2155-5435&rft_id=info:doi/10.1021/acscatal.3c00391&rft_dat=%3Cacs_cross%3Ea220575223%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true