Controlled-Release Mechanism Regulates Rhodium Migration and Size Redistribution Boosting Catalytic Methane Conversion

The migration of Rh atoms under a gas/reactive environment has a great impact on the dynamic restructuring and size redistribution of Rh catalysts in a variety of structure-sensitive catalytic reactions. To date, regulating the size distribution of active Rh species via controlled atomic migration r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS catalysis 2023-01, Vol.13 (2), p.1197-1206
Hauptverfasser: Li, Hong, Shen, Yuebo, Xiao, Xia, Jiang, Hong, Gu, Qingqing, Zhang, Yafeng, Lin, Lu, Luo, Wenhao, Zhou, Si, Zhao, Jijun, Wang, Aiqin, Zhang, Tao, Yang, Bing
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1206
container_issue 2
container_start_page 1197
container_title ACS catalysis
container_volume 13
creator Li, Hong
Shen, Yuebo
Xiao, Xia
Jiang, Hong
Gu, Qingqing
Zhang, Yafeng
Lin, Lu
Luo, Wenhao
Zhou, Si
Zhao, Jijun
Wang, Aiqin
Zhang, Tao
Yang, Bing
description The migration of Rh atoms under a gas/reactive environment has a great impact on the dynamic restructuring and size redistribution of Rh catalysts in a variety of structure-sensitive catalytic reactions. To date, regulating the size distribution of active Rh species via controlled atomic migration remains challenging. Here, we show a controlled-release mechanism to regulate Rh atom migration through two-dimensional (2D) zeolite nanosheets, enabling quasi-continuous size redistribution of active Rh species from a single atom to nanoparticles with reversibility. Utilizing state-of-the-art in situ characterizations, a reversible aggregation/redispersion of Rh catalysts in/out of the 2D zeolite was directly observed under H2 or CO environment. The interplay between gas environment and support confinement was disclosed that substantially restrained the dynamic migration of Rh species and enabled a quasi-continuous control of Rh size distribution over a wide temperature window and size range. The catalytic testing for mild oxidation of methane demonstrated a volcano correlation of methanol activity with increasing particle size. The sub-nanometer Rh clusters with an average diameter of 0.9 nm exhibited the highest methanol activity of 39.7 molCH3OOH·molRh –1·h–1 with remarkable selectivity as high as 73.2%, far beyond that of single atom species and larger particles. Density functional theory calculations and electron paramagnetic resonance spectroscopy further revealed that this size dependency is related to the preferential formation of •OH radicals on Rh clusters with different sizes, which acts as a key initiator for methane activation. Our results thus provide a practical approach to synthesize size-specific metal catalysts via controlled atomic migration.
doi_str_mv 10.1021/acscatal.2c05463
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acscatal_2c05463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b084852155</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-1c92ef2951d76efcb21d6b642d99431cad5e1f69e9e5d8d2847ec07ecf2a86023</originalsourceid><addsrcrecordid>eNp1UN9LwzAQDqLgmHv3MX-AnUnaZO2jFn_BhlD1uWTJtctoG0nSwfzrzdwEXzw47rj7vu-OD6FrSuaUMHorlVcyyG7OFOGZSM_QhFHOE56l_PxPf4lm3m9JjIyLfEEmaFfaITjbdaCTCjqQHvAK1EYOxve4gnbsZACPq43VZuzxyrROBmMHLAeN38wXRJA2PjizHn_m99b6YIYWl4eP9sGoKBiiIOB4awfOR9QVumhk52F2qlP08fjwXj4ny9enl_JumUiWk5BQVTBoWMGpXgho1JpRLdYiY7oospQqqTnQRhRQANe5Znm2AEViNkzmgrB0ishRVznrvYOm_nSml25fU1IfrKt_ratP1kXKzZESN_XWjm6ID_4P_wahiHWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Controlled-Release Mechanism Regulates Rhodium Migration and Size Redistribution Boosting Catalytic Methane Conversion</title><source>ACS Publications</source><creator>Li, Hong ; Shen, Yuebo ; Xiao, Xia ; Jiang, Hong ; Gu, Qingqing ; Zhang, Yafeng ; Lin, Lu ; Luo, Wenhao ; Zhou, Si ; Zhao, Jijun ; Wang, Aiqin ; Zhang, Tao ; Yang, Bing</creator><creatorcontrib>Li, Hong ; Shen, Yuebo ; Xiao, Xia ; Jiang, Hong ; Gu, Qingqing ; Zhang, Yafeng ; Lin, Lu ; Luo, Wenhao ; Zhou, Si ; Zhao, Jijun ; Wang, Aiqin ; Zhang, Tao ; Yang, Bing</creatorcontrib><description>The migration of Rh atoms under a gas/reactive environment has a great impact on the dynamic restructuring and size redistribution of Rh catalysts in a variety of structure-sensitive catalytic reactions. To date, regulating the size distribution of active Rh species via controlled atomic migration remains challenging. Here, we show a controlled-release mechanism to regulate Rh atom migration through two-dimensional (2D) zeolite nanosheets, enabling quasi-continuous size redistribution of active Rh species from a single atom to nanoparticles with reversibility. Utilizing state-of-the-art in situ characterizations, a reversible aggregation/redispersion of Rh catalysts in/out of the 2D zeolite was directly observed under H2 or CO environment. The interplay between gas environment and support confinement was disclosed that substantially restrained the dynamic migration of Rh species and enabled a quasi-continuous control of Rh size distribution over a wide temperature window and size range. The catalytic testing for mild oxidation of methane demonstrated a volcano correlation of methanol activity with increasing particle size. The sub-nanometer Rh clusters with an average diameter of 0.9 nm exhibited the highest methanol activity of 39.7 molCH3OOH·molRh –1·h–1 with remarkable selectivity as high as 73.2%, far beyond that of single atom species and larger particles. Density functional theory calculations and electron paramagnetic resonance spectroscopy further revealed that this size dependency is related to the preferential formation of •OH radicals on Rh clusters with different sizes, which acts as a key initiator for methane activation. Our results thus provide a practical approach to synthesize size-specific metal catalysts via controlled atomic migration.</description><identifier>ISSN: 2155-5435</identifier><identifier>EISSN: 2155-5435</identifier><identifier>DOI: 10.1021/acscatal.2c05463</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS catalysis, 2023-01, Vol.13 (2), p.1197-1206</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a280t-1c92ef2951d76efcb21d6b642d99431cad5e1f69e9e5d8d2847ec07ecf2a86023</citedby><cites>FETCH-LOGICAL-a280t-1c92ef2951d76efcb21d6b642d99431cad5e1f69e9e5d8d2847ec07ecf2a86023</cites><orcidid>0000-0003-4552-0360 ; 0000-0003-3515-0642 ; 0000-0003-1941-3799 ; 0000-0001-9470-7215 ; 0000-0002-3263-7159 ; 0000-0002-0842-1075</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acscatal.2c05463$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acscatal.2c05463$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Li, Hong</creatorcontrib><creatorcontrib>Shen, Yuebo</creatorcontrib><creatorcontrib>Xiao, Xia</creatorcontrib><creatorcontrib>Jiang, Hong</creatorcontrib><creatorcontrib>Gu, Qingqing</creatorcontrib><creatorcontrib>Zhang, Yafeng</creatorcontrib><creatorcontrib>Lin, Lu</creatorcontrib><creatorcontrib>Luo, Wenhao</creatorcontrib><creatorcontrib>Zhou, Si</creatorcontrib><creatorcontrib>Zhao, Jijun</creatorcontrib><creatorcontrib>Wang, Aiqin</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Yang, Bing</creatorcontrib><title>Controlled-Release Mechanism Regulates Rhodium Migration and Size Redistribution Boosting Catalytic Methane Conversion</title><title>ACS catalysis</title><addtitle>ACS Catal</addtitle><description>The migration of Rh atoms under a gas/reactive environment has a great impact on the dynamic restructuring and size redistribution of Rh catalysts in a variety of structure-sensitive catalytic reactions. To date, regulating the size distribution of active Rh species via controlled atomic migration remains challenging. Here, we show a controlled-release mechanism to regulate Rh atom migration through two-dimensional (2D) zeolite nanosheets, enabling quasi-continuous size redistribution of active Rh species from a single atom to nanoparticles with reversibility. Utilizing state-of-the-art in situ characterizations, a reversible aggregation/redispersion of Rh catalysts in/out of the 2D zeolite was directly observed under H2 or CO environment. The interplay between gas environment and support confinement was disclosed that substantially restrained the dynamic migration of Rh species and enabled a quasi-continuous control of Rh size distribution over a wide temperature window and size range. The catalytic testing for mild oxidation of methane demonstrated a volcano correlation of methanol activity with increasing particle size. The sub-nanometer Rh clusters with an average diameter of 0.9 nm exhibited the highest methanol activity of 39.7 molCH3OOH·molRh –1·h–1 with remarkable selectivity as high as 73.2%, far beyond that of single atom species and larger particles. Density functional theory calculations and electron paramagnetic resonance spectroscopy further revealed that this size dependency is related to the preferential formation of •OH radicals on Rh clusters with different sizes, which acts as a key initiator for methane activation. Our results thus provide a practical approach to synthesize size-specific metal catalysts via controlled atomic migration.</description><issn>2155-5435</issn><issn>2155-5435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UN9LwzAQDqLgmHv3MX-AnUnaZO2jFn_BhlD1uWTJtctoG0nSwfzrzdwEXzw47rj7vu-OD6FrSuaUMHorlVcyyG7OFOGZSM_QhFHOE56l_PxPf4lm3m9JjIyLfEEmaFfaITjbdaCTCjqQHvAK1EYOxve4gnbsZACPq43VZuzxyrROBmMHLAeN38wXRJA2PjizHn_m99b6YIYWl4eP9sGoKBiiIOB4awfOR9QVumhk52F2qlP08fjwXj4ny9enl_JumUiWk5BQVTBoWMGpXgho1JpRLdYiY7oospQqqTnQRhRQANe5Znm2AEViNkzmgrB0ishRVznrvYOm_nSml25fU1IfrKt_ratP1kXKzZESN_XWjm6ID_4P_wahiHWg</recordid><startdate>20230120</startdate><enddate>20230120</enddate><creator>Li, Hong</creator><creator>Shen, Yuebo</creator><creator>Xiao, Xia</creator><creator>Jiang, Hong</creator><creator>Gu, Qingqing</creator><creator>Zhang, Yafeng</creator><creator>Lin, Lu</creator><creator>Luo, Wenhao</creator><creator>Zhou, Si</creator><creator>Zhao, Jijun</creator><creator>Wang, Aiqin</creator><creator>Zhang, Tao</creator><creator>Yang, Bing</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4552-0360</orcidid><orcidid>https://orcid.org/0000-0003-3515-0642</orcidid><orcidid>https://orcid.org/0000-0003-1941-3799</orcidid><orcidid>https://orcid.org/0000-0001-9470-7215</orcidid><orcidid>https://orcid.org/0000-0002-3263-7159</orcidid><orcidid>https://orcid.org/0000-0002-0842-1075</orcidid></search><sort><creationdate>20230120</creationdate><title>Controlled-Release Mechanism Regulates Rhodium Migration and Size Redistribution Boosting Catalytic Methane Conversion</title><author>Li, Hong ; Shen, Yuebo ; Xiao, Xia ; Jiang, Hong ; Gu, Qingqing ; Zhang, Yafeng ; Lin, Lu ; Luo, Wenhao ; Zhou, Si ; Zhao, Jijun ; Wang, Aiqin ; Zhang, Tao ; Yang, Bing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-1c92ef2951d76efcb21d6b642d99431cad5e1f69e9e5d8d2847ec07ecf2a86023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hong</creatorcontrib><creatorcontrib>Shen, Yuebo</creatorcontrib><creatorcontrib>Xiao, Xia</creatorcontrib><creatorcontrib>Jiang, Hong</creatorcontrib><creatorcontrib>Gu, Qingqing</creatorcontrib><creatorcontrib>Zhang, Yafeng</creatorcontrib><creatorcontrib>Lin, Lu</creatorcontrib><creatorcontrib>Luo, Wenhao</creatorcontrib><creatorcontrib>Zhou, Si</creatorcontrib><creatorcontrib>Zhao, Jijun</creatorcontrib><creatorcontrib>Wang, Aiqin</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Yang, Bing</creatorcontrib><collection>CrossRef</collection><jtitle>ACS catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hong</au><au>Shen, Yuebo</au><au>Xiao, Xia</au><au>Jiang, Hong</au><au>Gu, Qingqing</au><au>Zhang, Yafeng</au><au>Lin, Lu</au><au>Luo, Wenhao</au><au>Zhou, Si</au><au>Zhao, Jijun</au><au>Wang, Aiqin</au><au>Zhang, Tao</au><au>Yang, Bing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlled-Release Mechanism Regulates Rhodium Migration and Size Redistribution Boosting Catalytic Methane Conversion</atitle><jtitle>ACS catalysis</jtitle><addtitle>ACS Catal</addtitle><date>2023-01-20</date><risdate>2023</risdate><volume>13</volume><issue>2</issue><spage>1197</spage><epage>1206</epage><pages>1197-1206</pages><issn>2155-5435</issn><eissn>2155-5435</eissn><abstract>The migration of Rh atoms under a gas/reactive environment has a great impact on the dynamic restructuring and size redistribution of Rh catalysts in a variety of structure-sensitive catalytic reactions. To date, regulating the size distribution of active Rh species via controlled atomic migration remains challenging. Here, we show a controlled-release mechanism to regulate Rh atom migration through two-dimensional (2D) zeolite nanosheets, enabling quasi-continuous size redistribution of active Rh species from a single atom to nanoparticles with reversibility. Utilizing state-of-the-art in situ characterizations, a reversible aggregation/redispersion of Rh catalysts in/out of the 2D zeolite was directly observed under H2 or CO environment. The interplay between gas environment and support confinement was disclosed that substantially restrained the dynamic migration of Rh species and enabled a quasi-continuous control of Rh size distribution over a wide temperature window and size range. The catalytic testing for mild oxidation of methane demonstrated a volcano correlation of methanol activity with increasing particle size. The sub-nanometer Rh clusters with an average diameter of 0.9 nm exhibited the highest methanol activity of 39.7 molCH3OOH·molRh –1·h–1 with remarkable selectivity as high as 73.2%, far beyond that of single atom species and larger particles. Density functional theory calculations and electron paramagnetic resonance spectroscopy further revealed that this size dependency is related to the preferential formation of •OH radicals on Rh clusters with different sizes, which acts as a key initiator for methane activation. Our results thus provide a practical approach to synthesize size-specific metal catalysts via controlled atomic migration.</abstract><pub>American Chemical Society</pub><doi>10.1021/acscatal.2c05463</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4552-0360</orcidid><orcidid>https://orcid.org/0000-0003-3515-0642</orcidid><orcidid>https://orcid.org/0000-0003-1941-3799</orcidid><orcidid>https://orcid.org/0000-0001-9470-7215</orcidid><orcidid>https://orcid.org/0000-0002-3263-7159</orcidid><orcidid>https://orcid.org/0000-0002-0842-1075</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2155-5435
ispartof ACS catalysis, 2023-01, Vol.13 (2), p.1197-1206
issn 2155-5435
2155-5435
language eng
recordid cdi_crossref_primary_10_1021_acscatal_2c05463
source ACS Publications
title Controlled-Release Mechanism Regulates Rhodium Migration and Size Redistribution Boosting Catalytic Methane Conversion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A49%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlled-Release%20Mechanism%20Regulates%20Rhodium%20Migration%20and%20Size%20Redistribution%20Boosting%20Catalytic%20Methane%20Conversion&rft.jtitle=ACS%20catalysis&rft.au=Li,%20Hong&rft.date=2023-01-20&rft.volume=13&rft.issue=2&rft.spage=1197&rft.epage=1206&rft.pages=1197-1206&rft.issn=2155-5435&rft.eissn=2155-5435&rft_id=info:doi/10.1021/acscatal.2c05463&rft_dat=%3Cacs_cross%3Eb084852155%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true