Electron Transfer Trade-offs in MOF-Derived Cobalt-Embedded Nitrogen-Doped Carbon Nanotubes Boost Catalytic Ozonation for Gaseous Sulfur-Containing VOC Elimination

High-performance and robust catalysts act as core drivers for catalytic ozonation to eliminate gaseous sulfur-containing volatile organic compounds (VOCs). Herein, nitrogen-doped carbon nanotubes embedded with Co species (Co@NCNT) are synthesized by thermolysis of a ZIF-67/melamine mixture. The carb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS catalysis 2023-01, Vol.13 (1), p.692-705
Hauptverfasser: Qu, Wei, Tang, Zhuoyun, Wen, Hailin, Luo, Manhui, Zhong, Tao, Lian, Qiyu, Hu, Lingling, Tian, Shuanghong, He, Chun, Shu, Dong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 705
container_issue 1
container_start_page 692
container_title ACS catalysis
container_volume 13
creator Qu, Wei
Tang, Zhuoyun
Wen, Hailin
Luo, Manhui
Zhong, Tao
Lian, Qiyu
Hu, Lingling
Tian, Shuanghong
He, Chun
Shu, Dong
description High-performance and robust catalysts act as core drivers for catalytic ozonation to eliminate gaseous sulfur-containing volatile organic compounds (VOCs). Herein, nitrogen-doped carbon nanotubes embedded with Co species (Co@NCNT) are synthesized by thermolysis of a ZIF-67/melamine mixture. The carbon-confinement effects in Co@NCNT not only improve the stability of Co species but also regulate the electronic structure of CoC bonds, consequently synergistically improving the catalytic ozonation performance. The experimental results indicate that the Co@NCNT catalyst could still remove ∼86% of odorous methyl mercaptan (CH3SH) after running for 60 h at 25 °C under an initial concentration of 50 ppm CH3SH and 40 ppm ozone, relative humidity of 60%, and space velocity of 600,000 mL h–1 g–1, outdistancing reported values under comparable reaction conditions. Detailed characterization and theoretical simulations reveal that the electronic metal–support interaction of CoC bonds in Co@NCNT significantly adjusts the electronic structure of Co species, thereby promoting ozone-specific adsorption/activation to convert the surface atomic oxygen (*Oad) and ·OH/1O2/·O2 –. Also, the electrons obtained from CH3SH in the electron-poor center transferred through the CCo bond bridge to maintain the redox cycle of Co0/2+ → Co3+ → Co0/2+ and realize the efficient and stable removal of CH3SH into CO2/SO4 2–/H2O. This work demonstrates that MOF-derived materials with tunable electronic structures achieve the stable removal efficiency for gaseous sulfur-containing VOCs via electron transfer trade-offs and provide potential candidate catalysts for the application of air purification.
doi_str_mv 10.1021/acscatal.2c05285
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acscatal_2c05285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c979015228</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-30573ebd045a22f0e495624ed90ba4ed5c957326c2c2e81440afc444c160b8dc3</originalsourceid><addsrcrecordid>eNp1UMtOwzAQjBBIVNA7R38ALo5jp-kR0gdIpTlQuEYbx65cpXZlO0jld_hRXLVIXNjLvmZGu5MkdykZpYSmDyC8gADdiArCacEvkgFNOcecZfzyT32dDL3fkhiM58WYDJLvWSdFcNagtQPjlXTHopXYKuWRNui1muOpdPpTtqi0DXQBz3aNbNvYr3RkbqTBU7s_rsE1UWgFxoa-kR49WetDHMfLDkELVH1ZA0FHjLIOLcBL23v01neqd7i0JoA22mzQR1WiWad3-oS-Ta4UdF4Oz_kmeZ_P1uUzXlaLl_JxiYEWJOCM8HEmmzb-BpQqItmE55TJdkIaiImLSQTQXFBBZZEyRkAJxphIc9IUrchuEnLSFc5676Sq907vwB3qlNRHn-tfn-uzz5Fyf6LETb21vTPxwP_hP1EqhAI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electron Transfer Trade-offs in MOF-Derived Cobalt-Embedded Nitrogen-Doped Carbon Nanotubes Boost Catalytic Ozonation for Gaseous Sulfur-Containing VOC Elimination</title><source>ACS Publications</source><creator>Qu, Wei ; Tang, Zhuoyun ; Wen, Hailin ; Luo, Manhui ; Zhong, Tao ; Lian, Qiyu ; Hu, Lingling ; Tian, Shuanghong ; He, Chun ; Shu, Dong</creator><creatorcontrib>Qu, Wei ; Tang, Zhuoyun ; Wen, Hailin ; Luo, Manhui ; Zhong, Tao ; Lian, Qiyu ; Hu, Lingling ; Tian, Shuanghong ; He, Chun ; Shu, Dong</creatorcontrib><description>High-performance and robust catalysts act as core drivers for catalytic ozonation to eliminate gaseous sulfur-containing volatile organic compounds (VOCs). Herein, nitrogen-doped carbon nanotubes embedded with Co species (Co@NCNT) are synthesized by thermolysis of a ZIF-67/melamine mixture. The carbon-confinement effects in Co@NCNT not only improve the stability of Co species but also regulate the electronic structure of CoC bonds, consequently synergistically improving the catalytic ozonation performance. The experimental results indicate that the Co@NCNT catalyst could still remove ∼86% of odorous methyl mercaptan (CH3SH) after running for 60 h at 25 °C under an initial concentration of 50 ppm CH3SH and 40 ppm ozone, relative humidity of 60%, and space velocity of 600,000 mL h–1 g–1, outdistancing reported values under comparable reaction conditions. Detailed characterization and theoretical simulations reveal that the electronic metal–support interaction of CoC bonds in Co@NCNT significantly adjusts the electronic structure of Co species, thereby promoting ozone-specific adsorption/activation to convert the surface atomic oxygen (*Oad) and ·OH/1O2/·O2 –. Also, the electrons obtained from CH3SH in the electron-poor center transferred through the CCo bond bridge to maintain the redox cycle of Co0/2+ → Co3+ → Co0/2+ and realize the efficient and stable removal of CH3SH into CO2/SO4 2–/H2O. This work demonstrates that MOF-derived materials with tunable electronic structures achieve the stable removal efficiency for gaseous sulfur-containing VOCs via electron transfer trade-offs and provide potential candidate catalysts for the application of air purification.</description><identifier>ISSN: 2155-5435</identifier><identifier>EISSN: 2155-5435</identifier><identifier>DOI: 10.1021/acscatal.2c05285</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS catalysis, 2023-01, Vol.13 (1), p.692-705</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a280t-30573ebd045a22f0e495624ed90ba4ed5c957326c2c2e81440afc444c160b8dc3</citedby><cites>FETCH-LOGICAL-a280t-30573ebd045a22f0e495624ed90ba4ed5c957326c2c2e81440afc444c160b8dc3</cites><orcidid>0000-0002-9734-9932 ; 0000-0001-6915-6714 ; 0000-0002-3875-5631</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acscatal.2c05285$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acscatal.2c05285$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Qu, Wei</creatorcontrib><creatorcontrib>Tang, Zhuoyun</creatorcontrib><creatorcontrib>Wen, Hailin</creatorcontrib><creatorcontrib>Luo, Manhui</creatorcontrib><creatorcontrib>Zhong, Tao</creatorcontrib><creatorcontrib>Lian, Qiyu</creatorcontrib><creatorcontrib>Hu, Lingling</creatorcontrib><creatorcontrib>Tian, Shuanghong</creatorcontrib><creatorcontrib>He, Chun</creatorcontrib><creatorcontrib>Shu, Dong</creatorcontrib><title>Electron Transfer Trade-offs in MOF-Derived Cobalt-Embedded Nitrogen-Doped Carbon Nanotubes Boost Catalytic Ozonation for Gaseous Sulfur-Containing VOC Elimination</title><title>ACS catalysis</title><addtitle>ACS Catal</addtitle><description>High-performance and robust catalysts act as core drivers for catalytic ozonation to eliminate gaseous sulfur-containing volatile organic compounds (VOCs). Herein, nitrogen-doped carbon nanotubes embedded with Co species (Co@NCNT) are synthesized by thermolysis of a ZIF-67/melamine mixture. The carbon-confinement effects in Co@NCNT not only improve the stability of Co species but also regulate the electronic structure of CoC bonds, consequently synergistically improving the catalytic ozonation performance. The experimental results indicate that the Co@NCNT catalyst could still remove ∼86% of odorous methyl mercaptan (CH3SH) after running for 60 h at 25 °C under an initial concentration of 50 ppm CH3SH and 40 ppm ozone, relative humidity of 60%, and space velocity of 600,000 mL h–1 g–1, outdistancing reported values under comparable reaction conditions. Detailed characterization and theoretical simulations reveal that the electronic metal–support interaction of CoC bonds in Co@NCNT significantly adjusts the electronic structure of Co species, thereby promoting ozone-specific adsorption/activation to convert the surface atomic oxygen (*Oad) and ·OH/1O2/·O2 –. Also, the electrons obtained from CH3SH in the electron-poor center transferred through the CCo bond bridge to maintain the redox cycle of Co0/2+ → Co3+ → Co0/2+ and realize the efficient and stable removal of CH3SH into CO2/SO4 2–/H2O. This work demonstrates that MOF-derived materials with tunable electronic structures achieve the stable removal efficiency for gaseous sulfur-containing VOCs via electron transfer trade-offs and provide potential candidate catalysts for the application of air purification.</description><issn>2155-5435</issn><issn>2155-5435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UMtOwzAQjBBIVNA7R38ALo5jp-kR0gdIpTlQuEYbx65cpXZlO0jld_hRXLVIXNjLvmZGu5MkdykZpYSmDyC8gADdiArCacEvkgFNOcecZfzyT32dDL3fkhiM58WYDJLvWSdFcNagtQPjlXTHopXYKuWRNui1muOpdPpTtqi0DXQBz3aNbNvYr3RkbqTBU7s_rsE1UWgFxoa-kR49WetDHMfLDkELVH1ZA0FHjLIOLcBL23v01neqd7i0JoA22mzQR1WiWad3-oS-Ta4UdF4Oz_kmeZ_P1uUzXlaLl_JxiYEWJOCM8HEmmzb-BpQqItmE55TJdkIaiImLSQTQXFBBZZEyRkAJxphIc9IUrchuEnLSFc5676Sq907vwB3qlNRHn-tfn-uzz5Fyf6LETb21vTPxwP_hP1EqhAI</recordid><startdate>20230106</startdate><enddate>20230106</enddate><creator>Qu, Wei</creator><creator>Tang, Zhuoyun</creator><creator>Wen, Hailin</creator><creator>Luo, Manhui</creator><creator>Zhong, Tao</creator><creator>Lian, Qiyu</creator><creator>Hu, Lingling</creator><creator>Tian, Shuanghong</creator><creator>He, Chun</creator><creator>Shu, Dong</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9734-9932</orcidid><orcidid>https://orcid.org/0000-0001-6915-6714</orcidid><orcidid>https://orcid.org/0000-0002-3875-5631</orcidid></search><sort><creationdate>20230106</creationdate><title>Electron Transfer Trade-offs in MOF-Derived Cobalt-Embedded Nitrogen-Doped Carbon Nanotubes Boost Catalytic Ozonation for Gaseous Sulfur-Containing VOC Elimination</title><author>Qu, Wei ; Tang, Zhuoyun ; Wen, Hailin ; Luo, Manhui ; Zhong, Tao ; Lian, Qiyu ; Hu, Lingling ; Tian, Shuanghong ; He, Chun ; Shu, Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-30573ebd045a22f0e495624ed90ba4ed5c957326c2c2e81440afc444c160b8dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qu, Wei</creatorcontrib><creatorcontrib>Tang, Zhuoyun</creatorcontrib><creatorcontrib>Wen, Hailin</creatorcontrib><creatorcontrib>Luo, Manhui</creatorcontrib><creatorcontrib>Zhong, Tao</creatorcontrib><creatorcontrib>Lian, Qiyu</creatorcontrib><creatorcontrib>Hu, Lingling</creatorcontrib><creatorcontrib>Tian, Shuanghong</creatorcontrib><creatorcontrib>He, Chun</creatorcontrib><creatorcontrib>Shu, Dong</creatorcontrib><collection>CrossRef</collection><jtitle>ACS catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qu, Wei</au><au>Tang, Zhuoyun</au><au>Wen, Hailin</au><au>Luo, Manhui</au><au>Zhong, Tao</au><au>Lian, Qiyu</au><au>Hu, Lingling</au><au>Tian, Shuanghong</au><au>He, Chun</au><au>Shu, Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron Transfer Trade-offs in MOF-Derived Cobalt-Embedded Nitrogen-Doped Carbon Nanotubes Boost Catalytic Ozonation for Gaseous Sulfur-Containing VOC Elimination</atitle><jtitle>ACS catalysis</jtitle><addtitle>ACS Catal</addtitle><date>2023-01-06</date><risdate>2023</risdate><volume>13</volume><issue>1</issue><spage>692</spage><epage>705</epage><pages>692-705</pages><issn>2155-5435</issn><eissn>2155-5435</eissn><abstract>High-performance and robust catalysts act as core drivers for catalytic ozonation to eliminate gaseous sulfur-containing volatile organic compounds (VOCs). Herein, nitrogen-doped carbon nanotubes embedded with Co species (Co@NCNT) are synthesized by thermolysis of a ZIF-67/melamine mixture. The carbon-confinement effects in Co@NCNT not only improve the stability of Co species but also regulate the electronic structure of CoC bonds, consequently synergistically improving the catalytic ozonation performance. The experimental results indicate that the Co@NCNT catalyst could still remove ∼86% of odorous methyl mercaptan (CH3SH) after running for 60 h at 25 °C under an initial concentration of 50 ppm CH3SH and 40 ppm ozone, relative humidity of 60%, and space velocity of 600,000 mL h–1 g–1, outdistancing reported values under comparable reaction conditions. Detailed characterization and theoretical simulations reveal that the electronic metal–support interaction of CoC bonds in Co@NCNT significantly adjusts the electronic structure of Co species, thereby promoting ozone-specific adsorption/activation to convert the surface atomic oxygen (*Oad) and ·OH/1O2/·O2 –. Also, the electrons obtained from CH3SH in the electron-poor center transferred through the CCo bond bridge to maintain the redox cycle of Co0/2+ → Co3+ → Co0/2+ and realize the efficient and stable removal of CH3SH into CO2/SO4 2–/H2O. This work demonstrates that MOF-derived materials with tunable electronic structures achieve the stable removal efficiency for gaseous sulfur-containing VOCs via electron transfer trade-offs and provide potential candidate catalysts for the application of air purification.</abstract><pub>American Chemical Society</pub><doi>10.1021/acscatal.2c05285</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9734-9932</orcidid><orcidid>https://orcid.org/0000-0001-6915-6714</orcidid><orcidid>https://orcid.org/0000-0002-3875-5631</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2155-5435
ispartof ACS catalysis, 2023-01, Vol.13 (1), p.692-705
issn 2155-5435
2155-5435
language eng
recordid cdi_crossref_primary_10_1021_acscatal_2c05285
source ACS Publications
title Electron Transfer Trade-offs in MOF-Derived Cobalt-Embedded Nitrogen-Doped Carbon Nanotubes Boost Catalytic Ozonation for Gaseous Sulfur-Containing VOC Elimination
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A01%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20Transfer%20Trade-offs%20in%20MOF-Derived%20Cobalt-Embedded%20Nitrogen-Doped%20Carbon%20Nanotubes%20Boost%20Catalytic%20Ozonation%20for%20Gaseous%20Sulfur-Containing%20VOC%20Elimination&rft.jtitle=ACS%20catalysis&rft.au=Qu,%20Wei&rft.date=2023-01-06&rft.volume=13&rft.issue=1&rft.spage=692&rft.epage=705&rft.pages=692-705&rft.issn=2155-5435&rft.eissn=2155-5435&rft_id=info:doi/10.1021/acscatal.2c05285&rft_dat=%3Cacs_cross%3Ec979015228%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true