Modeling Anion Poisoning during Oxygen Reduction on Pt Near-Surface Alloys

Electrolyte effects play an important role in the activity of the oxygen reduction reaction (ORR) of Pt-based electrodes. Herein, we combine a computational model and rotating disk electrode measurements to investigate the effects from phosphate anion poisoning for the ORR on well-defined extended P...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS catalysis 2023-02, Vol.13 (4), p.2735-2743
Hauptverfasser: Petersen, Amanda S., Jensen, Kim D., Wan, Hao, Bagger, Alexander, Chorkendorff, Ib, Stephens, Ifan E. L., Rossmeisl, Jan, Escudero-Escribano, María
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2743
container_issue 4
container_start_page 2735
container_title ACS catalysis
container_volume 13
creator Petersen, Amanda S.
Jensen, Kim D.
Wan, Hao
Bagger, Alexander
Chorkendorff, Ib
Stephens, Ifan E. L.
Rossmeisl, Jan
Escudero-Escribano, María
description Electrolyte effects play an important role in the activity of the oxygen reduction reaction (ORR) of Pt-based electrodes. Herein, we combine a computational model and rotating disk electrode measurements to investigate the effects from phosphate anion poisoning for the ORR on well-defined extended Pt surfaces. We construct a model including the poisoning effect from phosphate species on Pt(111) and Cu/Pt(111) based on density functional theory simulations. By varying the subsurface Cu content of the Cu/Pt(111) alloy, we tune the *OH binding energies on the surface by means of ligand effects, and as a result, we tune the ORR activity. We have investigated the effect of adsorbed phosphate species at low overpotentials when tuning *OH binding energies. Our results display a direct scaling relationship between adsorbed *OH and phosphate species. From the model, we observe how the three-fold binding sites of phosphate anions limit the packing of poisoning phosphate on the surface, thus allowing for *OH adsorption even when poisoned. Our work shows that, regardless of surface site blockage from phosphate, the trend in the catalytic oxygen reduction activity is predominantly governed by the *OH binding.
doi_str_mv 10.1021/acscatal.2c04808
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acscatal_2c04808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>f92344612</sourcerecordid><originalsourceid>FETCH-LOGICAL-a322t-19cca05beabe3aaf0e4019b9cbe27f36867d27c833fcb92a1fcd29e2d83384713</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIVKV3jvkAUvyIE-dYVTxVKOJxjjb2ukoVbGQnEvl7ErVIXNjL7GNmtBpCLhldMsrZNeiooYN2yTXNFFUnZMaZlKnMhDz905-TRYx7OlYmc1XQGXl88gbbxu2SlWu8S158E72bZtOHCbbfww5d8oqm193EmEhd8owQ0rc-WNCYrNrWD_GCnFloIy6OOCcftzfv6_t0s717WK82KQjOu5SVWgOVNUKNAsBSzCgr61LXyAsrcpUXhhdaCWF1XXJgVhteIjfjRmUFE3NCD746-BgD2uorNJ8QhorRaoqj-o2jOsYxSq4OkvFS7X0f3Pjg__QfOq5kYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modeling Anion Poisoning during Oxygen Reduction on Pt Near-Surface Alloys</title><source>ACS Publications</source><creator>Petersen, Amanda S. ; Jensen, Kim D. ; Wan, Hao ; Bagger, Alexander ; Chorkendorff, Ib ; Stephens, Ifan E. L. ; Rossmeisl, Jan ; Escudero-Escribano, María</creator><creatorcontrib>Petersen, Amanda S. ; Jensen, Kim D. ; Wan, Hao ; Bagger, Alexander ; Chorkendorff, Ib ; Stephens, Ifan E. L. ; Rossmeisl, Jan ; Escudero-Escribano, María</creatorcontrib><description>Electrolyte effects play an important role in the activity of the oxygen reduction reaction (ORR) of Pt-based electrodes. Herein, we combine a computational model and rotating disk electrode measurements to investigate the effects from phosphate anion poisoning for the ORR on well-defined extended Pt surfaces. We construct a model including the poisoning effect from phosphate species on Pt(111) and Cu/Pt(111) based on density functional theory simulations. By varying the subsurface Cu content of the Cu/Pt(111) alloy, we tune the *OH binding energies on the surface by means of ligand effects, and as a result, we tune the ORR activity. We have investigated the effect of adsorbed phosphate species at low overpotentials when tuning *OH binding energies. Our results display a direct scaling relationship between adsorbed *OH and phosphate species. From the model, we observe how the three-fold binding sites of phosphate anions limit the packing of poisoning phosphate on the surface, thus allowing for *OH adsorption even when poisoned. Our work shows that, regardless of surface site blockage from phosphate, the trend in the catalytic oxygen reduction activity is predominantly governed by the *OH binding.</description><identifier>ISSN: 2155-5435</identifier><identifier>EISSN: 2155-5435</identifier><identifier>DOI: 10.1021/acscatal.2c04808</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS catalysis, 2023-02, Vol.13 (4), p.2735-2743</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a322t-19cca05beabe3aaf0e4019b9cbe27f36867d27c833fcb92a1fcd29e2d83384713</citedby><cites>FETCH-LOGICAL-a322t-19cca05beabe3aaf0e4019b9cbe27f36867d27c833fcb92a1fcd29e2d83384713</cites><orcidid>0000-0002-7489-3433 ; 0000-0003-2738-0325 ; 0000-0001-8818-0031 ; 0000-0001-7466-8458 ; 0000-0002-6432-3015 ; 0000-0003-2157-492X ; 0000-0001-7749-6567</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acscatal.2c04808$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acscatal.2c04808$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Petersen, Amanda S.</creatorcontrib><creatorcontrib>Jensen, Kim D.</creatorcontrib><creatorcontrib>Wan, Hao</creatorcontrib><creatorcontrib>Bagger, Alexander</creatorcontrib><creatorcontrib>Chorkendorff, Ib</creatorcontrib><creatorcontrib>Stephens, Ifan E. L.</creatorcontrib><creatorcontrib>Rossmeisl, Jan</creatorcontrib><creatorcontrib>Escudero-Escribano, María</creatorcontrib><title>Modeling Anion Poisoning during Oxygen Reduction on Pt Near-Surface Alloys</title><title>ACS catalysis</title><addtitle>ACS Catal</addtitle><description>Electrolyte effects play an important role in the activity of the oxygen reduction reaction (ORR) of Pt-based electrodes. Herein, we combine a computational model and rotating disk electrode measurements to investigate the effects from phosphate anion poisoning for the ORR on well-defined extended Pt surfaces. We construct a model including the poisoning effect from phosphate species on Pt(111) and Cu/Pt(111) based on density functional theory simulations. By varying the subsurface Cu content of the Cu/Pt(111) alloy, we tune the *OH binding energies on the surface by means of ligand effects, and as a result, we tune the ORR activity. We have investigated the effect of adsorbed phosphate species at low overpotentials when tuning *OH binding energies. Our results display a direct scaling relationship between adsorbed *OH and phosphate species. From the model, we observe how the three-fold binding sites of phosphate anions limit the packing of poisoning phosphate on the surface, thus allowing for *OH adsorption even when poisoned. Our work shows that, regardless of surface site blockage from phosphate, the trend in the catalytic oxygen reduction activity is predominantly governed by the *OH binding.</description><issn>2155-5435</issn><issn>2155-5435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UMtOwzAQtBBIVKV3jvkAUvyIE-dYVTxVKOJxjjb2ukoVbGQnEvl7ErVIXNjL7GNmtBpCLhldMsrZNeiooYN2yTXNFFUnZMaZlKnMhDz905-TRYx7OlYmc1XQGXl88gbbxu2SlWu8S158E72bZtOHCbbfww5d8oqm193EmEhd8owQ0rc-WNCYrNrWD_GCnFloIy6OOCcftzfv6_t0s717WK82KQjOu5SVWgOVNUKNAsBSzCgr61LXyAsrcpUXhhdaCWF1XXJgVhteIjfjRmUFE3NCD746-BgD2uorNJ8QhorRaoqj-o2jOsYxSq4OkvFS7X0f3Pjg__QfOq5kYQ</recordid><startdate>20230217</startdate><enddate>20230217</enddate><creator>Petersen, Amanda S.</creator><creator>Jensen, Kim D.</creator><creator>Wan, Hao</creator><creator>Bagger, Alexander</creator><creator>Chorkendorff, Ib</creator><creator>Stephens, Ifan E. L.</creator><creator>Rossmeisl, Jan</creator><creator>Escudero-Escribano, María</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7489-3433</orcidid><orcidid>https://orcid.org/0000-0003-2738-0325</orcidid><orcidid>https://orcid.org/0000-0001-8818-0031</orcidid><orcidid>https://orcid.org/0000-0001-7466-8458</orcidid><orcidid>https://orcid.org/0000-0002-6432-3015</orcidid><orcidid>https://orcid.org/0000-0003-2157-492X</orcidid><orcidid>https://orcid.org/0000-0001-7749-6567</orcidid></search><sort><creationdate>20230217</creationdate><title>Modeling Anion Poisoning during Oxygen Reduction on Pt Near-Surface Alloys</title><author>Petersen, Amanda S. ; Jensen, Kim D. ; Wan, Hao ; Bagger, Alexander ; Chorkendorff, Ib ; Stephens, Ifan E. L. ; Rossmeisl, Jan ; Escudero-Escribano, María</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a322t-19cca05beabe3aaf0e4019b9cbe27f36867d27c833fcb92a1fcd29e2d83384713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petersen, Amanda S.</creatorcontrib><creatorcontrib>Jensen, Kim D.</creatorcontrib><creatorcontrib>Wan, Hao</creatorcontrib><creatorcontrib>Bagger, Alexander</creatorcontrib><creatorcontrib>Chorkendorff, Ib</creatorcontrib><creatorcontrib>Stephens, Ifan E. L.</creatorcontrib><creatorcontrib>Rossmeisl, Jan</creatorcontrib><creatorcontrib>Escudero-Escribano, María</creatorcontrib><collection>CrossRef</collection><jtitle>ACS catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petersen, Amanda S.</au><au>Jensen, Kim D.</au><au>Wan, Hao</au><au>Bagger, Alexander</au><au>Chorkendorff, Ib</au><au>Stephens, Ifan E. L.</au><au>Rossmeisl, Jan</au><au>Escudero-Escribano, María</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Anion Poisoning during Oxygen Reduction on Pt Near-Surface Alloys</atitle><jtitle>ACS catalysis</jtitle><addtitle>ACS Catal</addtitle><date>2023-02-17</date><risdate>2023</risdate><volume>13</volume><issue>4</issue><spage>2735</spage><epage>2743</epage><pages>2735-2743</pages><issn>2155-5435</issn><eissn>2155-5435</eissn><abstract>Electrolyte effects play an important role in the activity of the oxygen reduction reaction (ORR) of Pt-based electrodes. Herein, we combine a computational model and rotating disk electrode measurements to investigate the effects from phosphate anion poisoning for the ORR on well-defined extended Pt surfaces. We construct a model including the poisoning effect from phosphate species on Pt(111) and Cu/Pt(111) based on density functional theory simulations. By varying the subsurface Cu content of the Cu/Pt(111) alloy, we tune the *OH binding energies on the surface by means of ligand effects, and as a result, we tune the ORR activity. We have investigated the effect of adsorbed phosphate species at low overpotentials when tuning *OH binding energies. Our results display a direct scaling relationship between adsorbed *OH and phosphate species. From the model, we observe how the three-fold binding sites of phosphate anions limit the packing of poisoning phosphate on the surface, thus allowing for *OH adsorption even when poisoned. Our work shows that, regardless of surface site blockage from phosphate, the trend in the catalytic oxygen reduction activity is predominantly governed by the *OH binding.</abstract><pub>American Chemical Society</pub><doi>10.1021/acscatal.2c04808</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7489-3433</orcidid><orcidid>https://orcid.org/0000-0003-2738-0325</orcidid><orcidid>https://orcid.org/0000-0001-8818-0031</orcidid><orcidid>https://orcid.org/0000-0001-7466-8458</orcidid><orcidid>https://orcid.org/0000-0002-6432-3015</orcidid><orcidid>https://orcid.org/0000-0003-2157-492X</orcidid><orcidid>https://orcid.org/0000-0001-7749-6567</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2155-5435
ispartof ACS catalysis, 2023-02, Vol.13 (4), p.2735-2743
issn 2155-5435
2155-5435
language eng
recordid cdi_crossref_primary_10_1021_acscatal_2c04808
source ACS Publications
title Modeling Anion Poisoning during Oxygen Reduction on Pt Near-Surface Alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A16%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Anion%20Poisoning%20during%20Oxygen%20Reduction%20on%20Pt%20Near-Surface%20Alloys&rft.jtitle=ACS%20catalysis&rft.au=Petersen,%20Amanda%20S.&rft.date=2023-02-17&rft.volume=13&rft.issue=4&rft.spage=2735&rft.epage=2743&rft.pages=2735-2743&rft.issn=2155-5435&rft.eissn=2155-5435&rft_id=info:doi/10.1021/acscatal.2c04808&rft_dat=%3Cacs_cross%3Ef92344612%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true