Electrocatalytic Water Oxidation by a Trinuclear Copper(II) Complex

We report a trinuclear copper­(II) complex, [(DAM)­Cu3(μ3-O)]­[Cl]4 (1, DAM = dodecaaza macrotetracycle), as a homogeneous electrocatalyst for water oxidation to dioxygen in phosphate-buffered solutions at pH 7.0, 8.1, and 11.5. Electrocatalytic water oxidation at pH 7 occurs at an overpotential of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS catalysis 2021-06, Vol.11 (12), p.7223-7240
Hauptverfasser: Geer, Ana M, Musgrave III, Charles, Webber, Christopher, Nielsen, Robert J, McKeown, Bradley A, Liu, Chang, Schleker, P. Philipp M, Jakes, Peter, Jia, Xiaofan, Dickie, Diane A, Granwehr, Josef, Zhang, Sen, Machan, Charles W, Goddard, William A, Gunnoe, T. Brent
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7240
container_issue 12
container_start_page 7223
container_title ACS catalysis
container_volume 11
creator Geer, Ana M
Musgrave III, Charles
Webber, Christopher
Nielsen, Robert J
McKeown, Bradley A
Liu, Chang
Schleker, P. Philipp M
Jakes, Peter
Jia, Xiaofan
Dickie, Diane A
Granwehr, Josef
Zhang, Sen
Machan, Charles W
Goddard, William A
Gunnoe, T. Brent
description We report a trinuclear copper­(II) complex, [(DAM)­Cu3(μ3-O)]­[Cl]4 (1, DAM = dodecaaza macrotetracycle), as a homogeneous electrocatalyst for water oxidation to dioxygen in phosphate-buffered solutions at pH 7.0, 8.1, and 11.5. Electrocatalytic water oxidation at pH 7 occurs at an overpotential of 550 mV with a turnover frequency of ∼19 s–1 at 1.5 V vs NHE. Controlled potential electrolysis (CPE) experiments at pH 11.5 over 3 h at 1.2 V and at pH 8.1 for 40 min at 1.37 V vs NHE confirm the evolution of dioxygen with Faradaic efficiencies of 81% and 45%, respectively. Rinse tests conducted after CPE studies provide evidence for the homogeneous nature of the catalysis. The linear dependence of the current density on the catalyst concentration indicates a likely first-order dependence on the Cu precatalyst 1, while kinetic isotope studies (H2O versus D2O) point to involvement of a proton in or preceding the rate-determining step. Rotating ring-disk electrode measurements at pH 8.1 and 11.2 show no evidence of H2O2 formation and support selectivity to form dioxygen. Freeze-quench electron paramagnetic resonance studies during electrolysis provide evidence for the formation of a molecular copper intermediate. Experimental and computational studies support a key role of the phosphate as an acceptor base. Moreover, density functional theory calculations highlight the importance of second-sphere interactions and the role of the nitrogen-based ligands to facilitate proton transfer processes.
doi_str_mv 10.1021/acscatal.1c01395
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acscatal_1c01395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>f14737026</sourcerecordid><originalsourceid>FETCH-LOGICAL-a322t-658216c930c2a0d88a66f6cca168e7a397fa6de0289a9ef09f79aeebda22753a3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWGrvHnNUcGs-muzmKEvVhUIvFY9hmp3Alm13SVLo_ntXW8GLc5kXZp5heAi552zOmeDP4KKDBO2cO8alUVdkIrhSmVpIdf0n35JZjDs21kLpImcTUi5bdCl0P_iQGkc_IWGg61NTQ2q6A90OFOgmNIejaxECLbu-x_BQVY9j3Pctnu7IjYc24uzSp-Tjdbkp37PV-q0qX1YZSCFSplUhuHZGMieA1UUBWnvtHHBdYA7S5B50jUwUBgx6ZnxuAHFbgxC5kiCnhJ3vutDFGNDbPjR7CIPlzH57sL8e7MXDiDydkXFid90xHMYH_1__Ar2lYWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electrocatalytic Water Oxidation by a Trinuclear Copper(II) Complex</title><source>ACS Publications</source><creator>Geer, Ana M ; Musgrave III, Charles ; Webber, Christopher ; Nielsen, Robert J ; McKeown, Bradley A ; Liu, Chang ; Schleker, P. Philipp M ; Jakes, Peter ; Jia, Xiaofan ; Dickie, Diane A ; Granwehr, Josef ; Zhang, Sen ; Machan, Charles W ; Goddard, William A ; Gunnoe, T. Brent</creator><creatorcontrib>Geer, Ana M ; Musgrave III, Charles ; Webber, Christopher ; Nielsen, Robert J ; McKeown, Bradley A ; Liu, Chang ; Schleker, P. Philipp M ; Jakes, Peter ; Jia, Xiaofan ; Dickie, Diane A ; Granwehr, Josef ; Zhang, Sen ; Machan, Charles W ; Goddard, William A ; Gunnoe, T. Brent</creatorcontrib><description>We report a trinuclear copper­(II) complex, [(DAM)­Cu3(μ3-O)]­[Cl]4 (1, DAM = dodecaaza macrotetracycle), as a homogeneous electrocatalyst for water oxidation to dioxygen in phosphate-buffered solutions at pH 7.0, 8.1, and 11.5. Electrocatalytic water oxidation at pH 7 occurs at an overpotential of 550 mV with a turnover frequency of ∼19 s–1 at 1.5 V vs NHE. Controlled potential electrolysis (CPE) experiments at pH 11.5 over 3 h at 1.2 V and at pH 8.1 for 40 min at 1.37 V vs NHE confirm the evolution of dioxygen with Faradaic efficiencies of 81% and 45%, respectively. Rinse tests conducted after CPE studies provide evidence for the homogeneous nature of the catalysis. The linear dependence of the current density on the catalyst concentration indicates a likely first-order dependence on the Cu precatalyst 1, while kinetic isotope studies (H2O versus D2O) point to involvement of a proton in or preceding the rate-determining step. Rotating ring-disk electrode measurements at pH 8.1 and 11.2 show no evidence of H2O2 formation and support selectivity to form dioxygen. Freeze-quench electron paramagnetic resonance studies during electrolysis provide evidence for the formation of a molecular copper intermediate. Experimental and computational studies support a key role of the phosphate as an acceptor base. Moreover, density functional theory calculations highlight the importance of second-sphere interactions and the role of the nitrogen-based ligands to facilitate proton transfer processes.</description><identifier>ISSN: 2155-5435</identifier><identifier>EISSN: 2155-5435</identifier><identifier>DOI: 10.1021/acscatal.1c01395</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS catalysis, 2021-06, Vol.11 (12), p.7223-7240</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a322t-658216c930c2a0d88a66f6cca168e7a397fa6de0289a9ef09f79aeebda22753a3</citedby><cites>FETCH-LOGICAL-a322t-658216c930c2a0d88a66f6cca168e7a397fa6de0289a9ef09f79aeebda22753a3</cites><orcidid>0000-0002-7962-0186 ; 0000-0002-7568-0608 ; 0000-0002-6366-0693 ; 0000-0001-5714-3887 ; 0000-0002-1716-3741 ; 0000-0002-3432-0817 ; 0000-0003-0425-5089 ; 0000-0002-5182-1138 ; 0000-0003-0097-5716 ; 0000-0003-0939-3309 ; 0000-0003-1115-6759</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acscatal.1c01395$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acscatal.1c01395$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids></links><search><creatorcontrib>Geer, Ana M</creatorcontrib><creatorcontrib>Musgrave III, Charles</creatorcontrib><creatorcontrib>Webber, Christopher</creatorcontrib><creatorcontrib>Nielsen, Robert J</creatorcontrib><creatorcontrib>McKeown, Bradley A</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Schleker, P. Philipp M</creatorcontrib><creatorcontrib>Jakes, Peter</creatorcontrib><creatorcontrib>Jia, Xiaofan</creatorcontrib><creatorcontrib>Dickie, Diane A</creatorcontrib><creatorcontrib>Granwehr, Josef</creatorcontrib><creatorcontrib>Zhang, Sen</creatorcontrib><creatorcontrib>Machan, Charles W</creatorcontrib><creatorcontrib>Goddard, William A</creatorcontrib><creatorcontrib>Gunnoe, T. Brent</creatorcontrib><title>Electrocatalytic Water Oxidation by a Trinuclear Copper(II) Complex</title><title>ACS catalysis</title><addtitle>ACS Catal</addtitle><description>We report a trinuclear copper­(II) complex, [(DAM)­Cu3(μ3-O)]­[Cl]4 (1, DAM = dodecaaza macrotetracycle), as a homogeneous electrocatalyst for water oxidation to dioxygen in phosphate-buffered solutions at pH 7.0, 8.1, and 11.5. Electrocatalytic water oxidation at pH 7 occurs at an overpotential of 550 mV with a turnover frequency of ∼19 s–1 at 1.5 V vs NHE. Controlled potential electrolysis (CPE) experiments at pH 11.5 over 3 h at 1.2 V and at pH 8.1 for 40 min at 1.37 V vs NHE confirm the evolution of dioxygen with Faradaic efficiencies of 81% and 45%, respectively. Rinse tests conducted after CPE studies provide evidence for the homogeneous nature of the catalysis. The linear dependence of the current density on the catalyst concentration indicates a likely first-order dependence on the Cu precatalyst 1, while kinetic isotope studies (H2O versus D2O) point to involvement of a proton in or preceding the rate-determining step. Rotating ring-disk electrode measurements at pH 8.1 and 11.2 show no evidence of H2O2 formation and support selectivity to form dioxygen. Freeze-quench electron paramagnetic resonance studies during electrolysis provide evidence for the formation of a molecular copper intermediate. Experimental and computational studies support a key role of the phosphate as an acceptor base. Moreover, density functional theory calculations highlight the importance of second-sphere interactions and the role of the nitrogen-based ligands to facilitate proton transfer processes.</description><issn>2155-5435</issn><issn>2155-5435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWGrvHnNUcGs-muzmKEvVhUIvFY9hmp3Alm13SVLo_ntXW8GLc5kXZp5heAi552zOmeDP4KKDBO2cO8alUVdkIrhSmVpIdf0n35JZjDs21kLpImcTUi5bdCl0P_iQGkc_IWGg61NTQ2q6A90OFOgmNIejaxECLbu-x_BQVY9j3Pctnu7IjYc24uzSp-Tjdbkp37PV-q0qX1YZSCFSplUhuHZGMieA1UUBWnvtHHBdYA7S5B50jUwUBgx6ZnxuAHFbgxC5kiCnhJ3vutDFGNDbPjR7CIPlzH57sL8e7MXDiDydkXFid90xHMYH_1__Ar2lYWQ</recordid><startdate>20210618</startdate><enddate>20210618</enddate><creator>Geer, Ana M</creator><creator>Musgrave III, Charles</creator><creator>Webber, Christopher</creator><creator>Nielsen, Robert J</creator><creator>McKeown, Bradley A</creator><creator>Liu, Chang</creator><creator>Schleker, P. Philipp M</creator><creator>Jakes, Peter</creator><creator>Jia, Xiaofan</creator><creator>Dickie, Diane A</creator><creator>Granwehr, Josef</creator><creator>Zhang, Sen</creator><creator>Machan, Charles W</creator><creator>Goddard, William A</creator><creator>Gunnoe, T. Brent</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7962-0186</orcidid><orcidid>https://orcid.org/0000-0002-7568-0608</orcidid><orcidid>https://orcid.org/0000-0002-6366-0693</orcidid><orcidid>https://orcid.org/0000-0001-5714-3887</orcidid><orcidid>https://orcid.org/0000-0002-1716-3741</orcidid><orcidid>https://orcid.org/0000-0002-3432-0817</orcidid><orcidid>https://orcid.org/0000-0003-0425-5089</orcidid><orcidid>https://orcid.org/0000-0002-5182-1138</orcidid><orcidid>https://orcid.org/0000-0003-0097-5716</orcidid><orcidid>https://orcid.org/0000-0003-0939-3309</orcidid><orcidid>https://orcid.org/0000-0003-1115-6759</orcidid></search><sort><creationdate>20210618</creationdate><title>Electrocatalytic Water Oxidation by a Trinuclear Copper(II) Complex</title><author>Geer, Ana M ; Musgrave III, Charles ; Webber, Christopher ; Nielsen, Robert J ; McKeown, Bradley A ; Liu, Chang ; Schleker, P. Philipp M ; Jakes, Peter ; Jia, Xiaofan ; Dickie, Diane A ; Granwehr, Josef ; Zhang, Sen ; Machan, Charles W ; Goddard, William A ; Gunnoe, T. Brent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a322t-658216c930c2a0d88a66f6cca168e7a397fa6de0289a9ef09f79aeebda22753a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geer, Ana M</creatorcontrib><creatorcontrib>Musgrave III, Charles</creatorcontrib><creatorcontrib>Webber, Christopher</creatorcontrib><creatorcontrib>Nielsen, Robert J</creatorcontrib><creatorcontrib>McKeown, Bradley A</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Schleker, P. Philipp M</creatorcontrib><creatorcontrib>Jakes, Peter</creatorcontrib><creatorcontrib>Jia, Xiaofan</creatorcontrib><creatorcontrib>Dickie, Diane A</creatorcontrib><creatorcontrib>Granwehr, Josef</creatorcontrib><creatorcontrib>Zhang, Sen</creatorcontrib><creatorcontrib>Machan, Charles W</creatorcontrib><creatorcontrib>Goddard, William A</creatorcontrib><creatorcontrib>Gunnoe, T. Brent</creatorcontrib><collection>CrossRef</collection><jtitle>ACS catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geer, Ana M</au><au>Musgrave III, Charles</au><au>Webber, Christopher</au><au>Nielsen, Robert J</au><au>McKeown, Bradley A</au><au>Liu, Chang</au><au>Schleker, P. Philipp M</au><au>Jakes, Peter</au><au>Jia, Xiaofan</au><au>Dickie, Diane A</au><au>Granwehr, Josef</au><au>Zhang, Sen</au><au>Machan, Charles W</au><au>Goddard, William A</au><au>Gunnoe, T. Brent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrocatalytic Water Oxidation by a Trinuclear Copper(II) Complex</atitle><jtitle>ACS catalysis</jtitle><addtitle>ACS Catal</addtitle><date>2021-06-18</date><risdate>2021</risdate><volume>11</volume><issue>12</issue><spage>7223</spage><epage>7240</epage><pages>7223-7240</pages><issn>2155-5435</issn><eissn>2155-5435</eissn><abstract>We report a trinuclear copper­(II) complex, [(DAM)­Cu3(μ3-O)]­[Cl]4 (1, DAM = dodecaaza macrotetracycle), as a homogeneous electrocatalyst for water oxidation to dioxygen in phosphate-buffered solutions at pH 7.0, 8.1, and 11.5. Electrocatalytic water oxidation at pH 7 occurs at an overpotential of 550 mV with a turnover frequency of ∼19 s–1 at 1.5 V vs NHE. Controlled potential electrolysis (CPE) experiments at pH 11.5 over 3 h at 1.2 V and at pH 8.1 for 40 min at 1.37 V vs NHE confirm the evolution of dioxygen with Faradaic efficiencies of 81% and 45%, respectively. Rinse tests conducted after CPE studies provide evidence for the homogeneous nature of the catalysis. The linear dependence of the current density on the catalyst concentration indicates a likely first-order dependence on the Cu precatalyst 1, while kinetic isotope studies (H2O versus D2O) point to involvement of a proton in or preceding the rate-determining step. Rotating ring-disk electrode measurements at pH 8.1 and 11.2 show no evidence of H2O2 formation and support selectivity to form dioxygen. Freeze-quench electron paramagnetic resonance studies during electrolysis provide evidence for the formation of a molecular copper intermediate. Experimental and computational studies support a key role of the phosphate as an acceptor base. Moreover, density functional theory calculations highlight the importance of second-sphere interactions and the role of the nitrogen-based ligands to facilitate proton transfer processes.</abstract><pub>American Chemical Society</pub><doi>10.1021/acscatal.1c01395</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-7962-0186</orcidid><orcidid>https://orcid.org/0000-0002-7568-0608</orcidid><orcidid>https://orcid.org/0000-0002-6366-0693</orcidid><orcidid>https://orcid.org/0000-0001-5714-3887</orcidid><orcidid>https://orcid.org/0000-0002-1716-3741</orcidid><orcidid>https://orcid.org/0000-0002-3432-0817</orcidid><orcidid>https://orcid.org/0000-0003-0425-5089</orcidid><orcidid>https://orcid.org/0000-0002-5182-1138</orcidid><orcidid>https://orcid.org/0000-0003-0097-5716</orcidid><orcidid>https://orcid.org/0000-0003-0939-3309</orcidid><orcidid>https://orcid.org/0000-0003-1115-6759</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2155-5435
ispartof ACS catalysis, 2021-06, Vol.11 (12), p.7223-7240
issn 2155-5435
2155-5435
language eng
recordid cdi_crossref_primary_10_1021_acscatal_1c01395
source ACS Publications
title Electrocatalytic Water Oxidation by a Trinuclear Copper(II) Complex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T07%3A16%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrocatalytic%20Water%20Oxidation%20by%20a%20Trinuclear%20Copper(II)%20Complex&rft.jtitle=ACS%20catalysis&rft.au=Geer,%20Ana%20M&rft.date=2021-06-18&rft.volume=11&rft.issue=12&rft.spage=7223&rft.epage=7240&rft.pages=7223-7240&rft.issn=2155-5435&rft.eissn=2155-5435&rft_id=info:doi/10.1021/acscatal.1c01395&rft_dat=%3Cacs_cross%3Ef14737026%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true