Boosting Photocatalytic Hydrogen Evolution Reaction Using Dual Plasmonic Antennas

Plasmon-mediated photocatalytic water splitting has attracted extensive attention due to its bright future in using visible light, but the enhancement mechanism is still unclear, and the efficiency remains low. Herein, a dual-plasmonic-antenna strategy that allows efficient generation of energetic h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS catalysis 2021-05, Vol.11 (9), p.5047-5053
Hauptverfasser: Yang, Jing-Liang, He, Yong-Lin, Ren, He, Zhong, Han-Liang, Lin, Jia-Sheng, Yang, Wei-Min, Li, Ming-De, Yang, Zhi-Lin, Zhang, Hua, Tian, Zhong-Qun, Li, Jian-Feng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5053
container_issue 9
container_start_page 5047
container_title ACS catalysis
container_volume 11
creator Yang, Jing-Liang
He, Yong-Lin
Ren, He
Zhong, Han-Liang
Lin, Jia-Sheng
Yang, Wei-Min
Li, Ming-De
Yang, Zhi-Lin
Zhang, Hua
Tian, Zhong-Qun
Li, Jian-Feng
description Plasmon-mediated photocatalytic water splitting has attracted extensive attention due to its bright future in using visible light, but the enhancement mechanism is still unclear, and the efficiency remains low. Herein, a dual-plasmonic-antenna strategy that allows efficient generation of energetic hot electrons and strong electromagnetic fields simultaneously has been developed to boost the photocatalytic hydrogen evolution reaction (HER). Au@CdS core–shell nanoparticles are assembled on Ag@SiO2 shell-isolated nanoparticles, forming dual-plasmonic-antenna nanocomposites. Transient absorption spectroscopic experiments and electromagnetic field simulations demonstrate that both hot-electron transfer and plasmon-induced resonance energy transfer exist in this system. The Au@CdS antenna can generate energetic hot electrons to trigger the HER, while the Ag@SiO2 antenna produces strong electromagnetic fields to promote the generation and separation of hot carriers, thus significantly improving the HER performance under visible light irradiation. Such a dual-plasmonic-antenna concept overcomes the intrinsic limitation of traditional plasmonic photocatalytic materials and offers unique opportunities to develop efficient photocatalysts.
doi_str_mv 10.1021/acscatal.1c00795
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acscatal_1c00795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>g36002500</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-7ab0ed9af672fd4f34139d7d373396b670fa702c717e9eaf8a85f3ce090c536f3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWGrvHvcDuHWy2Wx2j7VWKxSsYs9hmk3qlm0iSVbot3f7R_DiXObBzO_xeITcUhhTyOg9qqAwYjumCkBU_IIMMsp5ynPGL__oazIKYQv95LwoBQzI24NzITZ2kyw_XXRHl31sVDLf195ttE1m367tYuNs8q5RHcUqHIDHDttk2WLYOdsDExu1tRhuyJXBNujReQ_J6mn2MZ2ni9fnl-lkkWJWQkwFrkHXFZpCZKbODcspq2pRM8FYVawLAQYFZEpQoSuNpsSSG6Y0VKA4KwwbEjj5Ku9C8NrIL9_s0O8lBXloRf62Is-t9MjdCekvcus6b_uA_7__AAWyZ2s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Boosting Photocatalytic Hydrogen Evolution Reaction Using Dual Plasmonic Antennas</title><source>ACS Publications</source><creator>Yang, Jing-Liang ; He, Yong-Lin ; Ren, He ; Zhong, Han-Liang ; Lin, Jia-Sheng ; Yang, Wei-Min ; Li, Ming-De ; Yang, Zhi-Lin ; Zhang, Hua ; Tian, Zhong-Qun ; Li, Jian-Feng</creator><creatorcontrib>Yang, Jing-Liang ; He, Yong-Lin ; Ren, He ; Zhong, Han-Liang ; Lin, Jia-Sheng ; Yang, Wei-Min ; Li, Ming-De ; Yang, Zhi-Lin ; Zhang, Hua ; Tian, Zhong-Qun ; Li, Jian-Feng</creatorcontrib><description>Plasmon-mediated photocatalytic water splitting has attracted extensive attention due to its bright future in using visible light, but the enhancement mechanism is still unclear, and the efficiency remains low. Herein, a dual-plasmonic-antenna strategy that allows efficient generation of energetic hot electrons and strong electromagnetic fields simultaneously has been developed to boost the photocatalytic hydrogen evolution reaction (HER). Au@CdS core–shell nanoparticles are assembled on Ag@SiO2 shell-isolated nanoparticles, forming dual-plasmonic-antenna nanocomposites. Transient absorption spectroscopic experiments and electromagnetic field simulations demonstrate that both hot-electron transfer and plasmon-induced resonance energy transfer exist in this system. The Au@CdS antenna can generate energetic hot electrons to trigger the HER, while the Ag@SiO2 antenna produces strong electromagnetic fields to promote the generation and separation of hot carriers, thus significantly improving the HER performance under visible light irradiation. Such a dual-plasmonic-antenna concept overcomes the intrinsic limitation of traditional plasmonic photocatalytic materials and offers unique opportunities to develop efficient photocatalysts.</description><identifier>ISSN: 2155-5435</identifier><identifier>EISSN: 2155-5435</identifier><identifier>DOI: 10.1021/acscatal.1c00795</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS catalysis, 2021-05, Vol.11 (9), p.5047-5053</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a280t-7ab0ed9af672fd4f34139d7d373396b670fa702c717e9eaf8a85f3ce090c536f3</citedby><cites>FETCH-LOGICAL-a280t-7ab0ed9af672fd4f34139d7d373396b670fa702c717e9eaf8a85f3ce090c536f3</cites><orcidid>0000-0002-9775-8189 ; 0000-0002-4799-1492 ; 0000-0003-1598-6856 ; 0000-0001-9588-9030 ; 0000-0002-7568-8300</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acscatal.1c00795$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acscatal.1c00795$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27059,27907,27908,56721,56771</link.rule.ids></links><search><creatorcontrib>Yang, Jing-Liang</creatorcontrib><creatorcontrib>He, Yong-Lin</creatorcontrib><creatorcontrib>Ren, He</creatorcontrib><creatorcontrib>Zhong, Han-Liang</creatorcontrib><creatorcontrib>Lin, Jia-Sheng</creatorcontrib><creatorcontrib>Yang, Wei-Min</creatorcontrib><creatorcontrib>Li, Ming-De</creatorcontrib><creatorcontrib>Yang, Zhi-Lin</creatorcontrib><creatorcontrib>Zhang, Hua</creatorcontrib><creatorcontrib>Tian, Zhong-Qun</creatorcontrib><creatorcontrib>Li, Jian-Feng</creatorcontrib><title>Boosting Photocatalytic Hydrogen Evolution Reaction Using Dual Plasmonic Antennas</title><title>ACS catalysis</title><addtitle>ACS Catal</addtitle><description>Plasmon-mediated photocatalytic water splitting has attracted extensive attention due to its bright future in using visible light, but the enhancement mechanism is still unclear, and the efficiency remains low. Herein, a dual-plasmonic-antenna strategy that allows efficient generation of energetic hot electrons and strong electromagnetic fields simultaneously has been developed to boost the photocatalytic hydrogen evolution reaction (HER). Au@CdS core–shell nanoparticles are assembled on Ag@SiO2 shell-isolated nanoparticles, forming dual-plasmonic-antenna nanocomposites. Transient absorption spectroscopic experiments and electromagnetic field simulations demonstrate that both hot-electron transfer and plasmon-induced resonance energy transfer exist in this system. The Au@CdS antenna can generate energetic hot electrons to trigger the HER, while the Ag@SiO2 antenna produces strong electromagnetic fields to promote the generation and separation of hot carriers, thus significantly improving the HER performance under visible light irradiation. Such a dual-plasmonic-antenna concept overcomes the intrinsic limitation of traditional plasmonic photocatalytic materials and offers unique opportunities to develop efficient photocatalysts.</description><issn>2155-5435</issn><issn>2155-5435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWGrvHvcDuHWy2Wx2j7VWKxSsYs9hmk3qlm0iSVbot3f7R_DiXObBzO_xeITcUhhTyOg9qqAwYjumCkBU_IIMMsp5ynPGL__oazIKYQv95LwoBQzI24NzITZ2kyw_XXRHl31sVDLf195ttE1m367tYuNs8q5RHcUqHIDHDttk2WLYOdsDExu1tRhuyJXBNujReQ_J6mn2MZ2ni9fnl-lkkWJWQkwFrkHXFZpCZKbODcspq2pRM8FYVawLAQYFZEpQoSuNpsSSG6Y0VKA4KwwbEjj5Ku9C8NrIL9_s0O8lBXloRf62Is-t9MjdCekvcus6b_uA_7__AAWyZ2s</recordid><startdate>20210507</startdate><enddate>20210507</enddate><creator>Yang, Jing-Liang</creator><creator>He, Yong-Lin</creator><creator>Ren, He</creator><creator>Zhong, Han-Liang</creator><creator>Lin, Jia-Sheng</creator><creator>Yang, Wei-Min</creator><creator>Li, Ming-De</creator><creator>Yang, Zhi-Lin</creator><creator>Zhang, Hua</creator><creator>Tian, Zhong-Qun</creator><creator>Li, Jian-Feng</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9775-8189</orcidid><orcidid>https://orcid.org/0000-0002-4799-1492</orcidid><orcidid>https://orcid.org/0000-0003-1598-6856</orcidid><orcidid>https://orcid.org/0000-0001-9588-9030</orcidid><orcidid>https://orcid.org/0000-0002-7568-8300</orcidid></search><sort><creationdate>20210507</creationdate><title>Boosting Photocatalytic Hydrogen Evolution Reaction Using Dual Plasmonic Antennas</title><author>Yang, Jing-Liang ; He, Yong-Lin ; Ren, He ; Zhong, Han-Liang ; Lin, Jia-Sheng ; Yang, Wei-Min ; Li, Ming-De ; Yang, Zhi-Lin ; Zhang, Hua ; Tian, Zhong-Qun ; Li, Jian-Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-7ab0ed9af672fd4f34139d7d373396b670fa702c717e9eaf8a85f3ce090c536f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jing-Liang</creatorcontrib><creatorcontrib>He, Yong-Lin</creatorcontrib><creatorcontrib>Ren, He</creatorcontrib><creatorcontrib>Zhong, Han-Liang</creatorcontrib><creatorcontrib>Lin, Jia-Sheng</creatorcontrib><creatorcontrib>Yang, Wei-Min</creatorcontrib><creatorcontrib>Li, Ming-De</creatorcontrib><creatorcontrib>Yang, Zhi-Lin</creatorcontrib><creatorcontrib>Zhang, Hua</creatorcontrib><creatorcontrib>Tian, Zhong-Qun</creatorcontrib><creatorcontrib>Li, Jian-Feng</creatorcontrib><collection>CrossRef</collection><jtitle>ACS catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jing-Liang</au><au>He, Yong-Lin</au><au>Ren, He</au><au>Zhong, Han-Liang</au><au>Lin, Jia-Sheng</au><au>Yang, Wei-Min</au><au>Li, Ming-De</au><au>Yang, Zhi-Lin</au><au>Zhang, Hua</au><au>Tian, Zhong-Qun</au><au>Li, Jian-Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boosting Photocatalytic Hydrogen Evolution Reaction Using Dual Plasmonic Antennas</atitle><jtitle>ACS catalysis</jtitle><addtitle>ACS Catal</addtitle><date>2021-05-07</date><risdate>2021</risdate><volume>11</volume><issue>9</issue><spage>5047</spage><epage>5053</epage><pages>5047-5053</pages><issn>2155-5435</issn><eissn>2155-5435</eissn><abstract>Plasmon-mediated photocatalytic water splitting has attracted extensive attention due to its bright future in using visible light, but the enhancement mechanism is still unclear, and the efficiency remains low. Herein, a dual-plasmonic-antenna strategy that allows efficient generation of energetic hot electrons and strong electromagnetic fields simultaneously has been developed to boost the photocatalytic hydrogen evolution reaction (HER). Au@CdS core–shell nanoparticles are assembled on Ag@SiO2 shell-isolated nanoparticles, forming dual-plasmonic-antenna nanocomposites. Transient absorption spectroscopic experiments and electromagnetic field simulations demonstrate that both hot-electron transfer and plasmon-induced resonance energy transfer exist in this system. The Au@CdS antenna can generate energetic hot electrons to trigger the HER, while the Ag@SiO2 antenna produces strong electromagnetic fields to promote the generation and separation of hot carriers, thus significantly improving the HER performance under visible light irradiation. Such a dual-plasmonic-antenna concept overcomes the intrinsic limitation of traditional plasmonic photocatalytic materials and offers unique opportunities to develop efficient photocatalysts.</abstract><pub>American Chemical Society</pub><doi>10.1021/acscatal.1c00795</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9775-8189</orcidid><orcidid>https://orcid.org/0000-0002-4799-1492</orcidid><orcidid>https://orcid.org/0000-0003-1598-6856</orcidid><orcidid>https://orcid.org/0000-0001-9588-9030</orcidid><orcidid>https://orcid.org/0000-0002-7568-8300</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2155-5435
ispartof ACS catalysis, 2021-05, Vol.11 (9), p.5047-5053
issn 2155-5435
2155-5435
language eng
recordid cdi_crossref_primary_10_1021_acscatal_1c00795
source ACS Publications
title Boosting Photocatalytic Hydrogen Evolution Reaction Using Dual Plasmonic Antennas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T12%3A13%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boosting%20Photocatalytic%20Hydrogen%20Evolution%20Reaction%20Using%20Dual%20Plasmonic%20Antennas&rft.jtitle=ACS%20catalysis&rft.au=Yang,%20Jing-Liang&rft.date=2021-05-07&rft.volume=11&rft.issue=9&rft.spage=5047&rft.epage=5053&rft.pages=5047-5053&rft.issn=2155-5435&rft.eissn=2155-5435&rft_id=info:doi/10.1021/acscatal.1c00795&rft_dat=%3Cacs_cross%3Eg36002500%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true