Enzyme Hydration Determines Resistance in Organic Cosolvents

Biocatalysis in organic solvents (OSs) has found various important applications, particularly in organic synthesis and for the production of pharmaceuticals, flavors, and fragrances. However, the use of enzymes in OSs often results in enzyme deactivation or a dramatic drop in catalytic activity. Her...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS catalysis 2020-12, Vol.10 (24), p.14847-14856
Hauptverfasser: Cui, Haiyang, Zhang, Lingling, Eltoukhy, Lobna, Jiang, Qianjia, Korkunç, Seval Kübra, Jaeger, Karl-Erich, Schwaneberg, Ulrich, Davari, Mehdi D
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14856
container_issue 24
container_start_page 14847
container_title ACS catalysis
container_volume 10
creator Cui, Haiyang
Zhang, Lingling
Eltoukhy, Lobna
Jiang, Qianjia
Korkunç, Seval Kübra
Jaeger, Karl-Erich
Schwaneberg, Ulrich
Davari, Mehdi D
description Biocatalysis in organic solvents (OSs) has found various important applications, particularly in organic synthesis and for the production of pharmaceuticals, flavors, and fragrances. However, the use of enzymes in OSs often results in enzyme deactivation or a dramatic drop in catalytic activity. Herein, we have developed a comprehensive understanding of the interactions between enzymes and OSs based on numerous observables obtained from molecular dynamics simulation of 32 variants of Bacillus subtilis lipase A (BSLA). We have tested the wild-type enzymes and variants carrying single and multiple substitutions toward the organic cosolvent 2,2,2-trifluoroethanol (TFE, 12% (v/v)). After analyzing the distribution of 35 structural and dynamic observables, we uncovered that increased enzyme surface hydration of substituted sites is the predominant factor to drive the improved resistance in OS. The iterative recombination of four surface substitutions revealed that the extent of hydration in BSLA variants correlates strongly with its OS resistance (R 2 = 0.91). Remarkably, the substitutions recombination led to a highly resistant BSLA variant (I12R/M137H/N166E) with a 7.8-fold improved resistance in 12% (v/v) TFE, while retaining comparable catalytic activity (∼92%) compared to the wild-type enzyme. Our findings prove that strengthening protein surface hydration via surface charge engineering is an effective and efficient rational strategy for tailoring enzyme stability in OSs.
doi_str_mv 10.1021/acscatal.0c03233
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acscatal_0c03233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d196141676</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-e4727ea6062d648647c2d161412616beac53d8b25cfb6a0ddaafab8255c620953</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWGrvHvcDuHXyd1fwImu1QqEgeg6zSVZSullJorB-eldawYtzeQPvvWH4EXJJYUmB0Ws0yWDG_RIMcMb5CZkxKmUpBZenf_ZzskhpB9MIqeoKZuR2Fb7G3hXr0UbMfgjFvcsu9j64VDy75FPGYFzhQ7GNbxi8KZohDftPF3K6IGcd7pNbHHVOXh9WL8263Gwfn5q7TYmshlw6UbHKoQLFrBK1EpVhlioqKFNUtQ6N5LZumTRdqxCsReywrZmURjG4kXxO4HDXxCGl6Dr9Hn2PcdQU9A8A_QtAHwFMlatDZXL0bviIYXrw__g3BbBfAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enzyme Hydration Determines Resistance in Organic Cosolvents</title><source>American Chemical Society Journals</source><creator>Cui, Haiyang ; Zhang, Lingling ; Eltoukhy, Lobna ; Jiang, Qianjia ; Korkunç, Seval Kübra ; Jaeger, Karl-Erich ; Schwaneberg, Ulrich ; Davari, Mehdi D</creator><creatorcontrib>Cui, Haiyang ; Zhang, Lingling ; Eltoukhy, Lobna ; Jiang, Qianjia ; Korkunç, Seval Kübra ; Jaeger, Karl-Erich ; Schwaneberg, Ulrich ; Davari, Mehdi D</creatorcontrib><description>Biocatalysis in organic solvents (OSs) has found various important applications, particularly in organic synthesis and for the production of pharmaceuticals, flavors, and fragrances. However, the use of enzymes in OSs often results in enzyme deactivation or a dramatic drop in catalytic activity. Herein, we have developed a comprehensive understanding of the interactions between enzymes and OSs based on numerous observables obtained from molecular dynamics simulation of 32 variants of Bacillus subtilis lipase A (BSLA). We have tested the wild-type enzymes and variants carrying single and multiple substitutions toward the organic cosolvent 2,2,2-trifluoroethanol (TFE, 12% (v/v)). After analyzing the distribution of 35 structural and dynamic observables, we uncovered that increased enzyme surface hydration of substituted sites is the predominant factor to drive the improved resistance in OS. The iterative recombination of four surface substitutions revealed that the extent of hydration in BSLA variants correlates strongly with its OS resistance (R 2 = 0.91). Remarkably, the substitutions recombination led to a highly resistant BSLA variant (I12R/M137H/N166E) with a 7.8-fold improved resistance in 12% (v/v) TFE, while retaining comparable catalytic activity (∼92%) compared to the wild-type enzyme. Our findings prove that strengthening protein surface hydration via surface charge engineering is an effective and efficient rational strategy for tailoring enzyme stability in OSs.</description><identifier>ISSN: 2155-5435</identifier><identifier>EISSN: 2155-5435</identifier><identifier>DOI: 10.1021/acscatal.0c03233</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS catalysis, 2020-12, Vol.10 (24), p.14847-14856</ispartof><rights>2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a280t-e4727ea6062d648647c2d161412616beac53d8b25cfb6a0ddaafab8255c620953</citedby><cites>FETCH-LOGICAL-a280t-e4727ea6062d648647c2d161412616beac53d8b25cfb6a0ddaafab8255c620953</cites><orcidid>0000-0001-8360-0447 ; 0000-0003-4026-701X ; 0000-0002-3384-2576 ; 0000-0003-0089-7156 ; 0000-0002-6036-0708</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acscatal.0c03233$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acscatal.0c03233$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids></links><search><creatorcontrib>Cui, Haiyang</creatorcontrib><creatorcontrib>Zhang, Lingling</creatorcontrib><creatorcontrib>Eltoukhy, Lobna</creatorcontrib><creatorcontrib>Jiang, Qianjia</creatorcontrib><creatorcontrib>Korkunç, Seval Kübra</creatorcontrib><creatorcontrib>Jaeger, Karl-Erich</creatorcontrib><creatorcontrib>Schwaneberg, Ulrich</creatorcontrib><creatorcontrib>Davari, Mehdi D</creatorcontrib><title>Enzyme Hydration Determines Resistance in Organic Cosolvents</title><title>ACS catalysis</title><addtitle>ACS Catal</addtitle><description>Biocatalysis in organic solvents (OSs) has found various important applications, particularly in organic synthesis and for the production of pharmaceuticals, flavors, and fragrances. However, the use of enzymes in OSs often results in enzyme deactivation or a dramatic drop in catalytic activity. Herein, we have developed a comprehensive understanding of the interactions between enzymes and OSs based on numerous observables obtained from molecular dynamics simulation of 32 variants of Bacillus subtilis lipase A (BSLA). We have tested the wild-type enzymes and variants carrying single and multiple substitutions toward the organic cosolvent 2,2,2-trifluoroethanol (TFE, 12% (v/v)). After analyzing the distribution of 35 structural and dynamic observables, we uncovered that increased enzyme surface hydration of substituted sites is the predominant factor to drive the improved resistance in OS. The iterative recombination of four surface substitutions revealed that the extent of hydration in BSLA variants correlates strongly with its OS resistance (R 2 = 0.91). Remarkably, the substitutions recombination led to a highly resistant BSLA variant (I12R/M137H/N166E) with a 7.8-fold improved resistance in 12% (v/v) TFE, while retaining comparable catalytic activity (∼92%) compared to the wild-type enzyme. Our findings prove that strengthening protein surface hydration via surface charge engineering is an effective and efficient rational strategy for tailoring enzyme stability in OSs.</description><issn>2155-5435</issn><issn>2155-5435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWGrvHvcDuHXyd1fwImu1QqEgeg6zSVZSullJorB-eldawYtzeQPvvWH4EXJJYUmB0Ws0yWDG_RIMcMb5CZkxKmUpBZenf_ZzskhpB9MIqeoKZuR2Fb7G3hXr0UbMfgjFvcsu9j64VDy75FPGYFzhQ7GNbxi8KZohDftPF3K6IGcd7pNbHHVOXh9WL8263Gwfn5q7TYmshlw6UbHKoQLFrBK1EpVhlioqKFNUtQ6N5LZumTRdqxCsReywrZmURjG4kXxO4HDXxCGl6Dr9Hn2PcdQU9A8A_QtAHwFMlatDZXL0bviIYXrw__g3BbBfAg</recordid><startdate>20201218</startdate><enddate>20201218</enddate><creator>Cui, Haiyang</creator><creator>Zhang, Lingling</creator><creator>Eltoukhy, Lobna</creator><creator>Jiang, Qianjia</creator><creator>Korkunç, Seval Kübra</creator><creator>Jaeger, Karl-Erich</creator><creator>Schwaneberg, Ulrich</creator><creator>Davari, Mehdi D</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8360-0447</orcidid><orcidid>https://orcid.org/0000-0003-4026-701X</orcidid><orcidid>https://orcid.org/0000-0002-3384-2576</orcidid><orcidid>https://orcid.org/0000-0003-0089-7156</orcidid><orcidid>https://orcid.org/0000-0002-6036-0708</orcidid></search><sort><creationdate>20201218</creationdate><title>Enzyme Hydration Determines Resistance in Organic Cosolvents</title><author>Cui, Haiyang ; Zhang, Lingling ; Eltoukhy, Lobna ; Jiang, Qianjia ; Korkunç, Seval Kübra ; Jaeger, Karl-Erich ; Schwaneberg, Ulrich ; Davari, Mehdi D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-e4727ea6062d648647c2d161412616beac53d8b25cfb6a0ddaafab8255c620953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Haiyang</creatorcontrib><creatorcontrib>Zhang, Lingling</creatorcontrib><creatorcontrib>Eltoukhy, Lobna</creatorcontrib><creatorcontrib>Jiang, Qianjia</creatorcontrib><creatorcontrib>Korkunç, Seval Kübra</creatorcontrib><creatorcontrib>Jaeger, Karl-Erich</creatorcontrib><creatorcontrib>Schwaneberg, Ulrich</creatorcontrib><creatorcontrib>Davari, Mehdi D</creatorcontrib><collection>CrossRef</collection><jtitle>ACS catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Haiyang</au><au>Zhang, Lingling</au><au>Eltoukhy, Lobna</au><au>Jiang, Qianjia</au><au>Korkunç, Seval Kübra</au><au>Jaeger, Karl-Erich</au><au>Schwaneberg, Ulrich</au><au>Davari, Mehdi D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enzyme Hydration Determines Resistance in Organic Cosolvents</atitle><jtitle>ACS catalysis</jtitle><addtitle>ACS Catal</addtitle><date>2020-12-18</date><risdate>2020</risdate><volume>10</volume><issue>24</issue><spage>14847</spage><epage>14856</epage><pages>14847-14856</pages><issn>2155-5435</issn><eissn>2155-5435</eissn><abstract>Biocatalysis in organic solvents (OSs) has found various important applications, particularly in organic synthesis and for the production of pharmaceuticals, flavors, and fragrances. However, the use of enzymes in OSs often results in enzyme deactivation or a dramatic drop in catalytic activity. Herein, we have developed a comprehensive understanding of the interactions between enzymes and OSs based on numerous observables obtained from molecular dynamics simulation of 32 variants of Bacillus subtilis lipase A (BSLA). We have tested the wild-type enzymes and variants carrying single and multiple substitutions toward the organic cosolvent 2,2,2-trifluoroethanol (TFE, 12% (v/v)). After analyzing the distribution of 35 structural and dynamic observables, we uncovered that increased enzyme surface hydration of substituted sites is the predominant factor to drive the improved resistance in OS. The iterative recombination of four surface substitutions revealed that the extent of hydration in BSLA variants correlates strongly with its OS resistance (R 2 = 0.91). Remarkably, the substitutions recombination led to a highly resistant BSLA variant (I12R/M137H/N166E) with a 7.8-fold improved resistance in 12% (v/v) TFE, while retaining comparable catalytic activity (∼92%) compared to the wild-type enzyme. Our findings prove that strengthening protein surface hydration via surface charge engineering is an effective and efficient rational strategy for tailoring enzyme stability in OSs.</abstract><pub>American Chemical Society</pub><doi>10.1021/acscatal.0c03233</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8360-0447</orcidid><orcidid>https://orcid.org/0000-0003-4026-701X</orcidid><orcidid>https://orcid.org/0000-0002-3384-2576</orcidid><orcidid>https://orcid.org/0000-0003-0089-7156</orcidid><orcidid>https://orcid.org/0000-0002-6036-0708</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2155-5435
ispartof ACS catalysis, 2020-12, Vol.10 (24), p.14847-14856
issn 2155-5435
2155-5435
language eng
recordid cdi_crossref_primary_10_1021_acscatal_0c03233
source American Chemical Society Journals
title Enzyme Hydration Determines Resistance in Organic Cosolvents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T21%3A09%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enzyme%20Hydration%20Determines%20Resistance%20in%20Organic%20Cosolvents&rft.jtitle=ACS%20catalysis&rft.au=Cui,%20Haiyang&rft.date=2020-12-18&rft.volume=10&rft.issue=24&rft.spage=14847&rft.epage=14856&rft.pages=14847-14856&rft.issn=2155-5435&rft.eissn=2155-5435&rft_id=info:doi/10.1021/acscatal.0c03233&rft_dat=%3Cacs_cross%3Ed196141676%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true