Lattice Strain Induced by Linker Scission in Metal–Organic Framework Nanosheets for Oxygen Evolution Reaction

For electrochemical energy conversion, highly efficient and inexpensive electrocatalysts are required, which are principally designed and synthesized by virtue of structural regulations. Herein, we propose a rational linker scission approach to induce lattice strain in metal–organic framework (MOF)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS catalysis 2020-05, Vol.10 (10), p.5691-5697
Hauptverfasser: Ji, Qianqian, Kong, Yuan, Wang, Chao, Tan, Hao, Duan, Hengli, Hu, Wei, Li, Guinan, Lu, Ying, Li, Na, Wang, Yao, Tian, Jie, Qi, Zeming, Sun, Zhihu, Hu, Fengchun, Yan, Wensheng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5697
container_issue 10
container_start_page 5691
container_title ACS catalysis
container_volume 10
creator Ji, Qianqian
Kong, Yuan
Wang, Chao
Tan, Hao
Duan, Hengli
Hu, Wei
Li, Guinan
Lu, Ying
Li, Na
Wang, Yao
Tian, Jie
Qi, Zeming
Sun, Zhihu
Hu, Fengchun
Yan, Wensheng
description For electrochemical energy conversion, highly efficient and inexpensive electrocatalysts are required, which are principally designed and synthesized by virtue of structural regulations. Herein, we propose a rational linker scission approach to induce lattice strain in metal–organic framework (MOF) catalysts by partially replacing multicoordinating linkers with nonbridging ligands. Strained NiFe-MOFs with 6% lattice expansion exhibit a superior catalytic performance for the oxygen evolution reaction (OER) under alkaline conditions; the overpotential is reduced to 230 mV (86.6 mV dec–1) from 320 mV (164.9 mV dec–1) for the unstrained NiFe-MOFs at a current density of 10 mA cm–2. Operando studies by using synchrotron radiation X-ray absorption and infrared spectroscopy identified the emergence of a key *OOH intermediate on Ni3+/4+ sites during OER, providing strong evidence that the Ni3+/4+ sites are the active sites and the formation of *OOH is the rate-limiting step. The first-principles calculations were performed to reveal the strain-induced electronic structure changes of the NiFe-MOFs and the Gibbs free energy profile during OER. It is found that the optimized Ni 3d eg-orbital facilitates the formation of *OOH, thus enhancing the OER performance of the strained MOFs.
doi_str_mv 10.1021/acscatal.0c00989
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acscatal_0c00989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d7971573</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-4b5a365f6f13712d2588f3364d3c64ee1275b9968ce418eac97e9eb73cfb76973</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIVKV3jv4AUuw4dpIjqlqoFKhE4Rw5zrqkDxvZLtAb_8Af8iW4apG4sJcdaXZmVoPQJSVDSlJ6LZVXMsj1kChCyqI8Qb2Ucp7wjPHTP_gcDbxfkjgZF0VOeshWMoROAZ4HJzuDp6bdKmhxs8NVZ1bg8Fx13nfW4MjeQwz5_vyauYU0ncITJzfwbt0KP0hj_QtA8Fhbh2cfuwUYPH6z623Yix9Bqj24QGdarj0MjruPnifjp9FdUs1up6ObKpFpQUKSNVwywbXQlOU0bVNeFJoxkbVMiQyApjlvylIUCjJaRO8yhxKanCnd5KLMWR-Rg69y1nsHun513Ua6XU1Jve-s_u2sPnYWJVcHSWTqpd06Ex_8__wHslxyig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lattice Strain Induced by Linker Scission in Metal–Organic Framework Nanosheets for Oxygen Evolution Reaction</title><source>ACS Publications</source><creator>Ji, Qianqian ; Kong, Yuan ; Wang, Chao ; Tan, Hao ; Duan, Hengli ; Hu, Wei ; Li, Guinan ; Lu, Ying ; Li, Na ; Wang, Yao ; Tian, Jie ; Qi, Zeming ; Sun, Zhihu ; Hu, Fengchun ; Yan, Wensheng</creator><creatorcontrib>Ji, Qianqian ; Kong, Yuan ; Wang, Chao ; Tan, Hao ; Duan, Hengli ; Hu, Wei ; Li, Guinan ; Lu, Ying ; Li, Na ; Wang, Yao ; Tian, Jie ; Qi, Zeming ; Sun, Zhihu ; Hu, Fengchun ; Yan, Wensheng</creatorcontrib><description>For electrochemical energy conversion, highly efficient and inexpensive electrocatalysts are required, which are principally designed and synthesized by virtue of structural regulations. Herein, we propose a rational linker scission approach to induce lattice strain in metal–organic framework (MOF) catalysts by partially replacing multicoordinating linkers with nonbridging ligands. Strained NiFe-MOFs with 6% lattice expansion exhibit a superior catalytic performance for the oxygen evolution reaction (OER) under alkaline conditions; the overpotential is reduced to 230 mV (86.6 mV dec–1) from 320 mV (164.9 mV dec–1) for the unstrained NiFe-MOFs at a current density of 10 mA cm–2. Operando studies by using synchrotron radiation X-ray absorption and infrared spectroscopy identified the emergence of a key *OOH intermediate on Ni3+/4+ sites during OER, providing strong evidence that the Ni3+/4+ sites are the active sites and the formation of *OOH is the rate-limiting step. The first-principles calculations were performed to reveal the strain-induced electronic structure changes of the NiFe-MOFs and the Gibbs free energy profile during OER. It is found that the optimized Ni 3d eg-orbital facilitates the formation of *OOH, thus enhancing the OER performance of the strained MOFs.</description><identifier>ISSN: 2155-5435</identifier><identifier>EISSN: 2155-5435</identifier><identifier>DOI: 10.1021/acscatal.0c00989</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS catalysis, 2020-05, Vol.10 (10), p.5691-5697</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a280t-4b5a365f6f13712d2588f3364d3c64ee1275b9968ce418eac97e9eb73cfb76973</citedby><cites>FETCH-LOGICAL-a280t-4b5a365f6f13712d2588f3364d3c64ee1275b9968ce418eac97e9eb73cfb76973</cites><orcidid>0000-0001-6297-4589 ; 0000-0002-3898-969X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acscatal.0c00989$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acscatal.0c00989$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Ji, Qianqian</creatorcontrib><creatorcontrib>Kong, Yuan</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Tan, Hao</creatorcontrib><creatorcontrib>Duan, Hengli</creatorcontrib><creatorcontrib>Hu, Wei</creatorcontrib><creatorcontrib>Li, Guinan</creatorcontrib><creatorcontrib>Lu, Ying</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>Wang, Yao</creatorcontrib><creatorcontrib>Tian, Jie</creatorcontrib><creatorcontrib>Qi, Zeming</creatorcontrib><creatorcontrib>Sun, Zhihu</creatorcontrib><creatorcontrib>Hu, Fengchun</creatorcontrib><creatorcontrib>Yan, Wensheng</creatorcontrib><title>Lattice Strain Induced by Linker Scission in Metal–Organic Framework Nanosheets for Oxygen Evolution Reaction</title><title>ACS catalysis</title><addtitle>ACS Catal</addtitle><description>For electrochemical energy conversion, highly efficient and inexpensive electrocatalysts are required, which are principally designed and synthesized by virtue of structural regulations. Herein, we propose a rational linker scission approach to induce lattice strain in metal–organic framework (MOF) catalysts by partially replacing multicoordinating linkers with nonbridging ligands. Strained NiFe-MOFs with 6% lattice expansion exhibit a superior catalytic performance for the oxygen evolution reaction (OER) under alkaline conditions; the overpotential is reduced to 230 mV (86.6 mV dec–1) from 320 mV (164.9 mV dec–1) for the unstrained NiFe-MOFs at a current density of 10 mA cm–2. Operando studies by using synchrotron radiation X-ray absorption and infrared spectroscopy identified the emergence of a key *OOH intermediate on Ni3+/4+ sites during OER, providing strong evidence that the Ni3+/4+ sites are the active sites and the formation of *OOH is the rate-limiting step. The first-principles calculations were performed to reveal the strain-induced electronic structure changes of the NiFe-MOFs and the Gibbs free energy profile during OER. It is found that the optimized Ni 3d eg-orbital facilitates the formation of *OOH, thus enhancing the OER performance of the strained MOFs.</description><issn>2155-5435</issn><issn>2155-5435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UMtOwzAQtBBIVKV3jv4AUuw4dpIjqlqoFKhE4Rw5zrqkDxvZLtAb_8Af8iW4apG4sJcdaXZmVoPQJSVDSlJ6LZVXMsj1kChCyqI8Qb2Ucp7wjPHTP_gcDbxfkjgZF0VOeshWMoROAZ4HJzuDp6bdKmhxs8NVZ1bg8Fx13nfW4MjeQwz5_vyauYU0ncITJzfwbt0KP0hj_QtA8Fhbh2cfuwUYPH6z623Yix9Bqj24QGdarj0MjruPnifjp9FdUs1up6ObKpFpQUKSNVwywbXQlOU0bVNeFJoxkbVMiQyApjlvylIUCjJaRO8yhxKanCnd5KLMWR-Rg69y1nsHun513Ua6XU1Jve-s_u2sPnYWJVcHSWTqpd06Ex_8__wHslxyig</recordid><startdate>20200515</startdate><enddate>20200515</enddate><creator>Ji, Qianqian</creator><creator>Kong, Yuan</creator><creator>Wang, Chao</creator><creator>Tan, Hao</creator><creator>Duan, Hengli</creator><creator>Hu, Wei</creator><creator>Li, Guinan</creator><creator>Lu, Ying</creator><creator>Li, Na</creator><creator>Wang, Yao</creator><creator>Tian, Jie</creator><creator>Qi, Zeming</creator><creator>Sun, Zhihu</creator><creator>Hu, Fengchun</creator><creator>Yan, Wensheng</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6297-4589</orcidid><orcidid>https://orcid.org/0000-0002-3898-969X</orcidid></search><sort><creationdate>20200515</creationdate><title>Lattice Strain Induced by Linker Scission in Metal–Organic Framework Nanosheets for Oxygen Evolution Reaction</title><author>Ji, Qianqian ; Kong, Yuan ; Wang, Chao ; Tan, Hao ; Duan, Hengli ; Hu, Wei ; Li, Guinan ; Lu, Ying ; Li, Na ; Wang, Yao ; Tian, Jie ; Qi, Zeming ; Sun, Zhihu ; Hu, Fengchun ; Yan, Wensheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-4b5a365f6f13712d2588f3364d3c64ee1275b9968ce418eac97e9eb73cfb76973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Qianqian</creatorcontrib><creatorcontrib>Kong, Yuan</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Tan, Hao</creatorcontrib><creatorcontrib>Duan, Hengli</creatorcontrib><creatorcontrib>Hu, Wei</creatorcontrib><creatorcontrib>Li, Guinan</creatorcontrib><creatorcontrib>Lu, Ying</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>Wang, Yao</creatorcontrib><creatorcontrib>Tian, Jie</creatorcontrib><creatorcontrib>Qi, Zeming</creatorcontrib><creatorcontrib>Sun, Zhihu</creatorcontrib><creatorcontrib>Hu, Fengchun</creatorcontrib><creatorcontrib>Yan, Wensheng</creatorcontrib><collection>CrossRef</collection><jtitle>ACS catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Qianqian</au><au>Kong, Yuan</au><au>Wang, Chao</au><au>Tan, Hao</au><au>Duan, Hengli</au><au>Hu, Wei</au><au>Li, Guinan</au><au>Lu, Ying</au><au>Li, Na</au><au>Wang, Yao</au><au>Tian, Jie</au><au>Qi, Zeming</au><au>Sun, Zhihu</au><au>Hu, Fengchun</au><au>Yan, Wensheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice Strain Induced by Linker Scission in Metal–Organic Framework Nanosheets for Oxygen Evolution Reaction</atitle><jtitle>ACS catalysis</jtitle><addtitle>ACS Catal</addtitle><date>2020-05-15</date><risdate>2020</risdate><volume>10</volume><issue>10</issue><spage>5691</spage><epage>5697</epage><pages>5691-5697</pages><issn>2155-5435</issn><eissn>2155-5435</eissn><abstract>For electrochemical energy conversion, highly efficient and inexpensive electrocatalysts are required, which are principally designed and synthesized by virtue of structural regulations. Herein, we propose a rational linker scission approach to induce lattice strain in metal–organic framework (MOF) catalysts by partially replacing multicoordinating linkers with nonbridging ligands. Strained NiFe-MOFs with 6% lattice expansion exhibit a superior catalytic performance for the oxygen evolution reaction (OER) under alkaline conditions; the overpotential is reduced to 230 mV (86.6 mV dec–1) from 320 mV (164.9 mV dec–1) for the unstrained NiFe-MOFs at a current density of 10 mA cm–2. Operando studies by using synchrotron radiation X-ray absorption and infrared spectroscopy identified the emergence of a key *OOH intermediate on Ni3+/4+ sites during OER, providing strong evidence that the Ni3+/4+ sites are the active sites and the formation of *OOH is the rate-limiting step. The first-principles calculations were performed to reveal the strain-induced electronic structure changes of the NiFe-MOFs and the Gibbs free energy profile during OER. It is found that the optimized Ni 3d eg-orbital facilitates the formation of *OOH, thus enhancing the OER performance of the strained MOFs.</abstract><pub>American Chemical Society</pub><doi>10.1021/acscatal.0c00989</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6297-4589</orcidid><orcidid>https://orcid.org/0000-0002-3898-969X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2155-5435
ispartof ACS catalysis, 2020-05, Vol.10 (10), p.5691-5697
issn 2155-5435
2155-5435
language eng
recordid cdi_crossref_primary_10_1021_acscatal_0c00989
source ACS Publications
title Lattice Strain Induced by Linker Scission in Metal–Organic Framework Nanosheets for Oxygen Evolution Reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A32%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20Strain%20Induced%20by%20Linker%20Scission%20in%20Metal%E2%80%93Organic%20Framework%20Nanosheets%20for%20Oxygen%20Evolution%20Reaction&rft.jtitle=ACS%20catalysis&rft.au=Ji,%20Qianqian&rft.date=2020-05-15&rft.volume=10&rft.issue=10&rft.spage=5691&rft.epage=5697&rft.pages=5691-5697&rft.issn=2155-5435&rft.eissn=2155-5435&rft_id=info:doi/10.1021/acscatal.0c00989&rft_dat=%3Cacs_cross%3Ed7971573%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true