Portable Micropatterns of Neuronal Cells Supported by Thin Hydrogel Films

A grid micropattern of neuronal cells was formed on a free-standing collagen film (35 μm thickness) by directing migration and extension of neurons along a Matrigel pattern previously prepared on the film by the microcontact printing method. The neurons migrated to reach the nodes on the grid patter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS biomaterials science & engineering 2015-05, Vol.1 (5), p.329-334
Hauptverfasser: Nagamine, Kuniaki, Hirata, Takuya, Okamoto, Kohei, Abe, Yuina, Kaji, Hirokazu, Nishizawa, Matsuhiko
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 334
container_issue 5
container_start_page 329
container_title ACS biomaterials science & engineering
container_volume 1
creator Nagamine, Kuniaki
Hirata, Takuya
Okamoto, Kohei
Abe, Yuina
Kaji, Hirokazu
Nishizawa, Matsuhiko
description A grid micropattern of neuronal cells was formed on a free-standing collagen film (35 μm thickness) by directing migration and extension of neurons along a Matrigel pattern previously prepared on the film by the microcontact printing method. The neurons migrated to reach the nodes on the grid pattern and extended neurites to bridge cell bodies at the nodes. The resulting neuronal micropattern on the collagen film containing culture medium can be handled and deformed with tweezers with maintenance of physiological activity of the neurons, as examined by response of cytosolic Ca2+ concentration to a dose of bradykinin. This portability is the unique advantage of the present system that will open novel possibility of cellular engineering including the on-demand combination with analytical devices. The repetitive lamination of the film on a microelectrode chip was demonstrated for local electrical stimulation of a specific part of the grid micropattern of neurons, showing Ca2+ wave propagation along the neurites. The molecular permeability is the further advantage of the free-standing hydrogel substrate, which allows external supply of nutrients and dosing with chemical stimulants through the film even under rolled and laminated conditions.
doi_str_mv 10.1021/acsbiomaterials.5b00020
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsbiomaterials_5b00020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a415552211</sourcerecordid><originalsourceid>FETCH-LOGICAL-a390t-acb751556485f8a4c6ce288fe361cc902884a0316b8c0fe0bb75b1a7356b79a93</originalsourceid><addsrcrecordid>eNqFkN1OwyAYhonRuGXuFpQb6AYFCj00jXNL5k_iPG6AUe1CSwPtQe9elk1jPPHoew-e582XF4A7jBYYpXgpdVC1a2RvfC1tWDCFEErRBZimhJMkF1xc_soTMA_hEBFMBKOUXoMJITTNGSdTsHl1vpfKGvhUa-862cfWNkBXwWczeNdKCwtjbYBvQ9dF1uyhGuHus27hetx792EsXNW2CTfgqorfmPn5zsD76mFXrJPty-OmuN8mkuSoT6RWnGHGMipYJSTVmTapEJUhGdY6RzFTiQjOlNCoMkhFXGHJCcsUz2VOZoCfeuO7IXhTlZ2vG-nHEqPyuE_5Z5_yvE80b09mN6jG7H-87zUiQE5AbCgPbvDtUf-v9gsRv3f3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Portable Micropatterns of Neuronal Cells Supported by Thin Hydrogel Films</title><source>American Chemical Society Journals</source><creator>Nagamine, Kuniaki ; Hirata, Takuya ; Okamoto, Kohei ; Abe, Yuina ; Kaji, Hirokazu ; Nishizawa, Matsuhiko</creator><creatorcontrib>Nagamine, Kuniaki ; Hirata, Takuya ; Okamoto, Kohei ; Abe, Yuina ; Kaji, Hirokazu ; Nishizawa, Matsuhiko</creatorcontrib><description>A grid micropattern of neuronal cells was formed on a free-standing collagen film (35 μm thickness) by directing migration and extension of neurons along a Matrigel pattern previously prepared on the film by the microcontact printing method. The neurons migrated to reach the nodes on the grid pattern and extended neurites to bridge cell bodies at the nodes. The resulting neuronal micropattern on the collagen film containing culture medium can be handled and deformed with tweezers with maintenance of physiological activity of the neurons, as examined by response of cytosolic Ca2+ concentration to a dose of bradykinin. This portability is the unique advantage of the present system that will open novel possibility of cellular engineering including the on-demand combination with analytical devices. The repetitive lamination of the film on a microelectrode chip was demonstrated for local electrical stimulation of a specific part of the grid micropattern of neurons, showing Ca2+ wave propagation along the neurites. The molecular permeability is the further advantage of the free-standing hydrogel substrate, which allows external supply of nutrients and dosing with chemical stimulants through the film even under rolled and laminated conditions.</description><identifier>ISSN: 2373-9878</identifier><identifier>EISSN: 2373-9878</identifier><identifier>DOI: 10.1021/acsbiomaterials.5b00020</identifier><identifier>PMID: 33429573</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS biomaterials science &amp; engineering, 2015-05, Vol.1 (5), p.329-334</ispartof><rights>Copyright © 2015 American Chemical Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a390t-acb751556485f8a4c6ce288fe361cc902884a0316b8c0fe0bb75b1a7356b79a93</citedby><cites>FETCH-LOGICAL-a390t-acb751556485f8a4c6ce288fe361cc902884a0316b8c0fe0bb75b1a7356b79a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsbiomaterials.5b00020$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsbiomaterials.5b00020$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33429573$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nagamine, Kuniaki</creatorcontrib><creatorcontrib>Hirata, Takuya</creatorcontrib><creatorcontrib>Okamoto, Kohei</creatorcontrib><creatorcontrib>Abe, Yuina</creatorcontrib><creatorcontrib>Kaji, Hirokazu</creatorcontrib><creatorcontrib>Nishizawa, Matsuhiko</creatorcontrib><title>Portable Micropatterns of Neuronal Cells Supported by Thin Hydrogel Films</title><title>ACS biomaterials science &amp; engineering</title><addtitle>ACS Biomater. Sci. Eng</addtitle><description>A grid micropattern of neuronal cells was formed on a free-standing collagen film (35 μm thickness) by directing migration and extension of neurons along a Matrigel pattern previously prepared on the film by the microcontact printing method. The neurons migrated to reach the nodes on the grid pattern and extended neurites to bridge cell bodies at the nodes. The resulting neuronal micropattern on the collagen film containing culture medium can be handled and deformed with tweezers with maintenance of physiological activity of the neurons, as examined by response of cytosolic Ca2+ concentration to a dose of bradykinin. This portability is the unique advantage of the present system that will open novel possibility of cellular engineering including the on-demand combination with analytical devices. The repetitive lamination of the film on a microelectrode chip was demonstrated for local electrical stimulation of a specific part of the grid micropattern of neurons, showing Ca2+ wave propagation along the neurites. The molecular permeability is the further advantage of the free-standing hydrogel substrate, which allows external supply of nutrients and dosing with chemical stimulants through the film even under rolled and laminated conditions.</description><issn>2373-9878</issn><issn>2373-9878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkN1OwyAYhonRuGXuFpQb6AYFCj00jXNL5k_iPG6AUe1CSwPtQe9elk1jPPHoew-e582XF4A7jBYYpXgpdVC1a2RvfC1tWDCFEErRBZimhJMkF1xc_soTMA_hEBFMBKOUXoMJITTNGSdTsHl1vpfKGvhUa-862cfWNkBXwWczeNdKCwtjbYBvQ9dF1uyhGuHus27hetx792EsXNW2CTfgqorfmPn5zsD76mFXrJPty-OmuN8mkuSoT6RWnGHGMipYJSTVmTapEJUhGdY6RzFTiQjOlNCoMkhFXGHJCcsUz2VOZoCfeuO7IXhTlZ2vG-nHEqPyuE_5Z5_yvE80b09mN6jG7H-87zUiQE5AbCgPbvDtUf-v9gsRv3f3</recordid><startdate>20150511</startdate><enddate>20150511</enddate><creator>Nagamine, Kuniaki</creator><creator>Hirata, Takuya</creator><creator>Okamoto, Kohei</creator><creator>Abe, Yuina</creator><creator>Kaji, Hirokazu</creator><creator>Nishizawa, Matsuhiko</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150511</creationdate><title>Portable Micropatterns of Neuronal Cells Supported by Thin Hydrogel Films</title><author>Nagamine, Kuniaki ; Hirata, Takuya ; Okamoto, Kohei ; Abe, Yuina ; Kaji, Hirokazu ; Nishizawa, Matsuhiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a390t-acb751556485f8a4c6ce288fe361cc902884a0316b8c0fe0bb75b1a7356b79a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Nagamine, Kuniaki</creatorcontrib><creatorcontrib>Hirata, Takuya</creatorcontrib><creatorcontrib>Okamoto, Kohei</creatorcontrib><creatorcontrib>Abe, Yuina</creatorcontrib><creatorcontrib>Kaji, Hirokazu</creatorcontrib><creatorcontrib>Nishizawa, Matsuhiko</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS biomaterials science &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagamine, Kuniaki</au><au>Hirata, Takuya</au><au>Okamoto, Kohei</au><au>Abe, Yuina</au><au>Kaji, Hirokazu</au><au>Nishizawa, Matsuhiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Portable Micropatterns of Neuronal Cells Supported by Thin Hydrogel Films</atitle><jtitle>ACS biomaterials science &amp; engineering</jtitle><addtitle>ACS Biomater. Sci. Eng</addtitle><date>2015-05-11</date><risdate>2015</risdate><volume>1</volume><issue>5</issue><spage>329</spage><epage>334</epage><pages>329-334</pages><issn>2373-9878</issn><eissn>2373-9878</eissn><abstract>A grid micropattern of neuronal cells was formed on a free-standing collagen film (35 μm thickness) by directing migration and extension of neurons along a Matrigel pattern previously prepared on the film by the microcontact printing method. The neurons migrated to reach the nodes on the grid pattern and extended neurites to bridge cell bodies at the nodes. The resulting neuronal micropattern on the collagen film containing culture medium can be handled and deformed with tweezers with maintenance of physiological activity of the neurons, as examined by response of cytosolic Ca2+ concentration to a dose of bradykinin. This portability is the unique advantage of the present system that will open novel possibility of cellular engineering including the on-demand combination with analytical devices. The repetitive lamination of the film on a microelectrode chip was demonstrated for local electrical stimulation of a specific part of the grid micropattern of neurons, showing Ca2+ wave propagation along the neurites. The molecular permeability is the further advantage of the free-standing hydrogel substrate, which allows external supply of nutrients and dosing with chemical stimulants through the film even under rolled and laminated conditions.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33429573</pmid><doi>10.1021/acsbiomaterials.5b00020</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2373-9878
ispartof ACS biomaterials science & engineering, 2015-05, Vol.1 (5), p.329-334
issn 2373-9878
2373-9878
language eng
recordid cdi_crossref_primary_10_1021_acsbiomaterials_5b00020
source American Chemical Society Journals
title Portable Micropatterns of Neuronal Cells Supported by Thin Hydrogel Films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A33%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Portable%20Micropatterns%20of%20Neuronal%20Cells%20Supported%20by%20Thin%20Hydrogel%20Films&rft.jtitle=ACS%20biomaterials%20science%20&%20engineering&rft.au=Nagamine,%20Kuniaki&rft.date=2015-05-11&rft.volume=1&rft.issue=5&rft.spage=329&rft.epage=334&rft.pages=329-334&rft.issn=2373-9878&rft.eissn=2373-9878&rft_id=info:doi/10.1021/acsbiomaterials.5b00020&rft_dat=%3Cacs_cross%3Ea415552211%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/33429573&rfr_iscdi=true