Eco-Friendly Preparation of Epoxy-Rich Graphene Oxide for Wound Healing

Despite the ever-growing endangerment caused by the multidrug resistance (MDR) of bacteria, the development of effective antibacterial materials still remains a global challenge. Current antibiotic therapies cannot simultaneously inactivate bacteria and accelerate wound healing. This study aimed to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS biomaterials science & engineering 2021-02, Vol.7 (2), p.752-763
Hauptverfasser: Zheng, Ying, Li, Siqiao, Han, Daobin, Kong, Liangsheng, Wang, Jianmin, Zhao, Min, Cheng, Wei, Ju, Huangxian, Yang, Zhongzhu, Ding, Shijia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 763
container_issue 2
container_start_page 752
container_title ACS biomaterials science & engineering
container_volume 7
creator Zheng, Ying
Li, Siqiao
Han, Daobin
Kong, Liangsheng
Wang, Jianmin
Zhao, Min
Cheng, Wei
Ju, Huangxian
Yang, Zhongzhu
Ding, Shijia
description Despite the ever-growing endangerment caused by the multidrug resistance (MDR) of bacteria, the development of effective antibacterial materials still remains a global challenge. Current antibiotic therapies cannot simultaneously inactivate bacteria and accelerate wound healing. This study aimed to originally separate the intercalation of MnO3 + and the oxidation processes to synthesize epoxy-rich graphene oxide (erGO) nanofilms via an eco-friendly synthetic route, which possessed low density and large lamellar distribution and was rich in epoxide. Importantly, the MnO3 + could be separated from the product and recycled for preparing the next generation of erGO nanofilms, which was quite economical and eco-friendly. The erGO nanofilm was capable of successfully inhibiting Gram-negative bacteria and even had excellent growth-inhibitory effects on Gram-positive bacteria including multidrug resistance (MDR) bacteria, as evidenced by antibacterial phenomena. Additionally, the erGO nanofilm with high •C density formed from epoxide exerted excellent antibacterial effects through tight membrane wrapping and induction of lipid peroxidation. The wound-healing property of the erGO nanofilm was evaluated via treatments of wounds infected by Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), which not only killed bacteria but also accelerated wound healing in mice with a skin infection. The novel erGO nanofilm with dual antimicrobial mechanisms might serve as a promising multifunctional antimicrobial agent for medical wound dressing with high biocompatibility.
doi_str_mv 10.1021/acsbiomaterials.0c01598
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsbiomaterials_0c01598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2481114871</sourcerecordid><originalsourceid>FETCH-LOGICAL-a357t-f7b8eaabfcb0700b0edc95cab982091cdd36337201fee5428875589aee93850d3</originalsourceid><addsrcrecordid>eNqNkF1LwzAUhoMoTtS_oL0UpJo0yZJcytiHMFBE8bKk6amLdE1NWtz-vZmbIt7o1TkXz3vOy4PQOcFXBGfkWptQWLfUHXir63CFDSZcyT10lFFBUyWF3P-xD9BpCK8YY0IlZ4wdogGlTDGuxBGajo1LJ95CU9br5N5Dq73urGsSVyXj1q3W6YM1i2TqdbuABpK7lS0hqZxPnl3flMkMdG2blxN0UMUucLqbx-hpMn4czdL53fR2dDNPNeWiSytRSNC6qEyBBcYFhtIobnShZIYVMWVJh5SKDJMKgLNMSsG5VBpAxfK4pMfoYnu39e6th9DlSxsM1LVuwPUhz5gkhDApSETFFjXeheChyltvl9qvc4Lzjcj8l8h8JzImz3ZP-mIJ5XfuS1sELrfAOxSuCibqM_CNRdVDIoecZ3GjLNLy__TIdp_-R9FuF6N0G41V81fX-2bT86_-H_2ypbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2481114871</pqid></control><display><type>article</type><title>Eco-Friendly Preparation of Epoxy-Rich Graphene Oxide for Wound Healing</title><source>MEDLINE</source><source>ACS Publications</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Zheng, Ying ; Li, Siqiao ; Han, Daobin ; Kong, Liangsheng ; Wang, Jianmin ; Zhao, Min ; Cheng, Wei ; Ju, Huangxian ; Yang, Zhongzhu ; Ding, Shijia</creator><creatorcontrib>Zheng, Ying ; Li, Siqiao ; Han, Daobin ; Kong, Liangsheng ; Wang, Jianmin ; Zhao, Min ; Cheng, Wei ; Ju, Huangxian ; Yang, Zhongzhu ; Ding, Shijia</creatorcontrib><description>Despite the ever-growing endangerment caused by the multidrug resistance (MDR) of bacteria, the development of effective antibacterial materials still remains a global challenge. Current antibiotic therapies cannot simultaneously inactivate bacteria and accelerate wound healing. This study aimed to originally separate the intercalation of MnO3 + and the oxidation processes to synthesize epoxy-rich graphene oxide (erGO) nanofilms via an eco-friendly synthetic route, which possessed low density and large lamellar distribution and was rich in epoxide. Importantly, the MnO3 + could be separated from the product and recycled for preparing the next generation of erGO nanofilms, which was quite economical and eco-friendly. The erGO nanofilm was capable of successfully inhibiting Gram-negative bacteria and even had excellent growth-inhibitory effects on Gram-positive bacteria including multidrug resistance (MDR) bacteria, as evidenced by antibacterial phenomena. Additionally, the erGO nanofilm with high •C density formed from epoxide exerted excellent antibacterial effects through tight membrane wrapping and induction of lipid peroxidation. The wound-healing property of the erGO nanofilm was evaluated via treatments of wounds infected by Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), which not only killed bacteria but also accelerated wound healing in mice with a skin infection. The novel erGO nanofilm with dual antimicrobial mechanisms might serve as a promising multifunctional antimicrobial agent for medical wound dressing with high biocompatibility.</description><identifier>ISSN: 2373-9878</identifier><identifier>EISSN: 2373-9878</identifier><identifier>DOI: 10.1021/acsbiomaterials.0c01598</identifier><identifier>PMID: 33494597</identifier><language>eng</language><publisher>WASHINGTON: American Chemical Society</publisher><subject>Animals ; Applications and Health ; Escherichia coli ; Graphite ; Materials Science ; Materials Science, Biomaterials ; Mice ; Science &amp; Technology ; Staphylococcus aureus ; Technology ; Wound Healing</subject><ispartof>ACS biomaterials science &amp; engineering, 2021-02, Vol.7 (2), p.752-763</ispartof><rights>2021 American Chemical Society</rights><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>14</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000618655200034</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a357t-f7b8eaabfcb0700b0edc95cab982091cdd36337201fee5428875589aee93850d3</citedby><cites>FETCH-LOGICAL-a357t-f7b8eaabfcb0700b0edc95cab982091cdd36337201fee5428875589aee93850d3</cites><orcidid>0000-0002-6741-5302 ; 0000-0002-1921-9761 ; 0000-0002-9183-1656 ; 0000-0002-1068-0412</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsbiomaterials.0c01598$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsbiomaterials.0c01598$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,39263,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33494597$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Ying</creatorcontrib><creatorcontrib>Li, Siqiao</creatorcontrib><creatorcontrib>Han, Daobin</creatorcontrib><creatorcontrib>Kong, Liangsheng</creatorcontrib><creatorcontrib>Wang, Jianmin</creatorcontrib><creatorcontrib>Zhao, Min</creatorcontrib><creatorcontrib>Cheng, Wei</creatorcontrib><creatorcontrib>Ju, Huangxian</creatorcontrib><creatorcontrib>Yang, Zhongzhu</creatorcontrib><creatorcontrib>Ding, Shijia</creatorcontrib><title>Eco-Friendly Preparation of Epoxy-Rich Graphene Oxide for Wound Healing</title><title>ACS biomaterials science &amp; engineering</title><addtitle>ACS BIOMATER SCI ENG</addtitle><addtitle>ACS Biomater. Sci. Eng</addtitle><description>Despite the ever-growing endangerment caused by the multidrug resistance (MDR) of bacteria, the development of effective antibacterial materials still remains a global challenge. Current antibiotic therapies cannot simultaneously inactivate bacteria and accelerate wound healing. This study aimed to originally separate the intercalation of MnO3 + and the oxidation processes to synthesize epoxy-rich graphene oxide (erGO) nanofilms via an eco-friendly synthetic route, which possessed low density and large lamellar distribution and was rich in epoxide. Importantly, the MnO3 + could be separated from the product and recycled for preparing the next generation of erGO nanofilms, which was quite economical and eco-friendly. The erGO nanofilm was capable of successfully inhibiting Gram-negative bacteria and even had excellent growth-inhibitory effects on Gram-positive bacteria including multidrug resistance (MDR) bacteria, as evidenced by antibacterial phenomena. Additionally, the erGO nanofilm with high •C density formed from epoxide exerted excellent antibacterial effects through tight membrane wrapping and induction of lipid peroxidation. The wound-healing property of the erGO nanofilm was evaluated via treatments of wounds infected by Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), which not only killed bacteria but also accelerated wound healing in mice with a skin infection. The novel erGO nanofilm with dual antimicrobial mechanisms might serve as a promising multifunctional antimicrobial agent for medical wound dressing with high biocompatibility.</description><subject>Animals</subject><subject>Applications and Health</subject><subject>Escherichia coli</subject><subject>Graphite</subject><subject>Materials Science</subject><subject>Materials Science, Biomaterials</subject><subject>Mice</subject><subject>Science &amp; Technology</subject><subject>Staphylococcus aureus</subject><subject>Technology</subject><subject>Wound Healing</subject><issn>2373-9878</issn><issn>2373-9878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><recordid>eNqNkF1LwzAUhoMoTtS_oL0UpJo0yZJcytiHMFBE8bKk6amLdE1NWtz-vZmbIt7o1TkXz3vOy4PQOcFXBGfkWptQWLfUHXir63CFDSZcyT10lFFBUyWF3P-xD9BpCK8YY0IlZ4wdogGlTDGuxBGajo1LJ95CU9br5N5Dq73urGsSVyXj1q3W6YM1i2TqdbuABpK7lS0hqZxPnl3flMkMdG2blxN0UMUucLqbx-hpMn4czdL53fR2dDNPNeWiSytRSNC6qEyBBcYFhtIobnShZIYVMWVJh5SKDJMKgLNMSsG5VBpAxfK4pMfoYnu39e6th9DlSxsM1LVuwPUhz5gkhDApSETFFjXeheChyltvl9qvc4Lzjcj8l8h8JzImz3ZP-mIJ5XfuS1sELrfAOxSuCibqM_CNRdVDIoecZ3GjLNLy__TIdp_-R9FuF6N0G41V81fX-2bT86_-H_2ypbQ</recordid><startdate>20210208</startdate><enddate>20210208</enddate><creator>Zheng, Ying</creator><creator>Li, Siqiao</creator><creator>Han, Daobin</creator><creator>Kong, Liangsheng</creator><creator>Wang, Jianmin</creator><creator>Zhao, Min</creator><creator>Cheng, Wei</creator><creator>Ju, Huangxian</creator><creator>Yang, Zhongzhu</creator><creator>Ding, Shijia</creator><general>American Chemical Society</general><general>Amer Chemical Soc</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6741-5302</orcidid><orcidid>https://orcid.org/0000-0002-1921-9761</orcidid><orcidid>https://orcid.org/0000-0002-9183-1656</orcidid><orcidid>https://orcid.org/0000-0002-1068-0412</orcidid></search><sort><creationdate>20210208</creationdate><title>Eco-Friendly Preparation of Epoxy-Rich Graphene Oxide for Wound Healing</title><author>Zheng, Ying ; Li, Siqiao ; Han, Daobin ; Kong, Liangsheng ; Wang, Jianmin ; Zhao, Min ; Cheng, Wei ; Ju, Huangxian ; Yang, Zhongzhu ; Ding, Shijia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a357t-f7b8eaabfcb0700b0edc95cab982091cdd36337201fee5428875589aee93850d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Applications and Health</topic><topic>Escherichia coli</topic><topic>Graphite</topic><topic>Materials Science</topic><topic>Materials Science, Biomaterials</topic><topic>Mice</topic><topic>Science &amp; Technology</topic><topic>Staphylococcus aureus</topic><topic>Technology</topic><topic>Wound Healing</topic><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Ying</creatorcontrib><creatorcontrib>Li, Siqiao</creatorcontrib><creatorcontrib>Han, Daobin</creatorcontrib><creatorcontrib>Kong, Liangsheng</creatorcontrib><creatorcontrib>Wang, Jianmin</creatorcontrib><creatorcontrib>Zhao, Min</creatorcontrib><creatorcontrib>Cheng, Wei</creatorcontrib><creatorcontrib>Ju, Huangxian</creatorcontrib><creatorcontrib>Yang, Zhongzhu</creatorcontrib><creatorcontrib>Ding, Shijia</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS biomaterials science &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Ying</au><au>Li, Siqiao</au><au>Han, Daobin</au><au>Kong, Liangsheng</au><au>Wang, Jianmin</au><au>Zhao, Min</au><au>Cheng, Wei</au><au>Ju, Huangxian</au><au>Yang, Zhongzhu</au><au>Ding, Shijia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eco-Friendly Preparation of Epoxy-Rich Graphene Oxide for Wound Healing</atitle><jtitle>ACS biomaterials science &amp; engineering</jtitle><stitle>ACS BIOMATER SCI ENG</stitle><addtitle>ACS Biomater. Sci. Eng</addtitle><date>2021-02-08</date><risdate>2021</risdate><volume>7</volume><issue>2</issue><spage>752</spage><epage>763</epage><pages>752-763</pages><issn>2373-9878</issn><eissn>2373-9878</eissn><abstract>Despite the ever-growing endangerment caused by the multidrug resistance (MDR) of bacteria, the development of effective antibacterial materials still remains a global challenge. Current antibiotic therapies cannot simultaneously inactivate bacteria and accelerate wound healing. This study aimed to originally separate the intercalation of MnO3 + and the oxidation processes to synthesize epoxy-rich graphene oxide (erGO) nanofilms via an eco-friendly synthetic route, which possessed low density and large lamellar distribution and was rich in epoxide. Importantly, the MnO3 + could be separated from the product and recycled for preparing the next generation of erGO nanofilms, which was quite economical and eco-friendly. The erGO nanofilm was capable of successfully inhibiting Gram-negative bacteria and even had excellent growth-inhibitory effects on Gram-positive bacteria including multidrug resistance (MDR) bacteria, as evidenced by antibacterial phenomena. Additionally, the erGO nanofilm with high •C density formed from epoxide exerted excellent antibacterial effects through tight membrane wrapping and induction of lipid peroxidation. The wound-healing property of the erGO nanofilm was evaluated via treatments of wounds infected by Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), which not only killed bacteria but also accelerated wound healing in mice with a skin infection. The novel erGO nanofilm with dual antimicrobial mechanisms might serve as a promising multifunctional antimicrobial agent for medical wound dressing with high biocompatibility.</abstract><cop>WASHINGTON</cop><pub>American Chemical Society</pub><pmid>33494597</pmid><doi>10.1021/acsbiomaterials.0c01598</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6741-5302</orcidid><orcidid>https://orcid.org/0000-0002-1921-9761</orcidid><orcidid>https://orcid.org/0000-0002-9183-1656</orcidid><orcidid>https://orcid.org/0000-0002-1068-0412</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2373-9878
ispartof ACS biomaterials science & engineering, 2021-02, Vol.7 (2), p.752-763
issn 2373-9878
2373-9878
language eng
recordid cdi_crossref_primary_10_1021_acsbiomaterials_0c01598
source MEDLINE; ACS Publications; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Animals
Applications and Health
Escherichia coli
Graphite
Materials Science
Materials Science, Biomaterials
Mice
Science & Technology
Staphylococcus aureus
Technology
Wound Healing
title Eco-Friendly Preparation of Epoxy-Rich Graphene Oxide for Wound Healing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T14%3A43%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eco-Friendly%20Preparation%20of%20Epoxy-Rich%20Graphene%20Oxide%20for%20Wound%20Healing&rft.jtitle=ACS%20biomaterials%20science%20&%20engineering&rft.au=Zheng,%20Ying&rft.date=2021-02-08&rft.volume=7&rft.issue=2&rft.spage=752&rft.epage=763&rft.pages=752-763&rft.issn=2373-9878&rft.eissn=2373-9878&rft_id=info:doi/10.1021/acsbiomaterials.0c01598&rft_dat=%3Cproquest_cross%3E2481114871%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2481114871&rft_id=info:pmid/33494597&rfr_iscdi=true