Eco-Friendly Preparation of Epoxy-Rich Graphene Oxide for Wound Healing
Despite the ever-growing endangerment caused by the multidrug resistance (MDR) of bacteria, the development of effective antibacterial materials still remains a global challenge. Current antibiotic therapies cannot simultaneously inactivate bacteria and accelerate wound healing. This study aimed to...
Gespeichert in:
Veröffentlicht in: | ACS biomaterials science & engineering 2021-02, Vol.7 (2), p.752-763 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 763 |
---|---|
container_issue | 2 |
container_start_page | 752 |
container_title | ACS biomaterials science & engineering |
container_volume | 7 |
creator | Zheng, Ying Li, Siqiao Han, Daobin Kong, Liangsheng Wang, Jianmin Zhao, Min Cheng, Wei Ju, Huangxian Yang, Zhongzhu Ding, Shijia |
description | Despite the ever-growing endangerment caused by the multidrug resistance (MDR) of bacteria, the development of effective antibacterial materials still remains a global challenge. Current antibiotic therapies cannot simultaneously inactivate bacteria and accelerate wound healing. This study aimed to originally separate the intercalation of MnO3 + and the oxidation processes to synthesize epoxy-rich graphene oxide (erGO) nanofilms via an eco-friendly synthetic route, which possessed low density and large lamellar distribution and was rich in epoxide. Importantly, the MnO3 + could be separated from the product and recycled for preparing the next generation of erGO nanofilms, which was quite economical and eco-friendly. The erGO nanofilm was capable of successfully inhibiting Gram-negative bacteria and even had excellent growth-inhibitory effects on Gram-positive bacteria including multidrug resistance (MDR) bacteria, as evidenced by antibacterial phenomena. Additionally, the erGO nanofilm with high •C density formed from epoxide exerted excellent antibacterial effects through tight membrane wrapping and induction of lipid peroxidation. The wound-healing property of the erGO nanofilm was evaluated via treatments of wounds infected by Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), which not only killed bacteria but also accelerated wound healing in mice with a skin infection. The novel erGO nanofilm with dual antimicrobial mechanisms might serve as a promising multifunctional antimicrobial agent for medical wound dressing with high biocompatibility. |
doi_str_mv | 10.1021/acsbiomaterials.0c01598 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsbiomaterials_0c01598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2481114871</sourcerecordid><originalsourceid>FETCH-LOGICAL-a357t-f7b8eaabfcb0700b0edc95cab982091cdd36337201fee5428875589aee93850d3</originalsourceid><addsrcrecordid>eNqNkF1LwzAUhoMoTtS_oL0UpJo0yZJcytiHMFBE8bKk6amLdE1NWtz-vZmbIt7o1TkXz3vOy4PQOcFXBGfkWptQWLfUHXir63CFDSZcyT10lFFBUyWF3P-xD9BpCK8YY0IlZ4wdogGlTDGuxBGajo1LJ95CU9br5N5Dq73urGsSVyXj1q3W6YM1i2TqdbuABpK7lS0hqZxPnl3flMkMdG2blxN0UMUucLqbx-hpMn4czdL53fR2dDNPNeWiSytRSNC6qEyBBcYFhtIobnShZIYVMWVJh5SKDJMKgLNMSsG5VBpAxfK4pMfoYnu39e6th9DlSxsM1LVuwPUhz5gkhDApSETFFjXeheChyltvl9qvc4Lzjcj8l8h8JzImz3ZP-mIJ5XfuS1sELrfAOxSuCibqM_CNRdVDIoecZ3GjLNLy__TIdp_-R9FuF6N0G41V81fX-2bT86_-H_2ypbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2481114871</pqid></control><display><type>article</type><title>Eco-Friendly Preparation of Epoxy-Rich Graphene Oxide for Wound Healing</title><source>MEDLINE</source><source>ACS Publications</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Zheng, Ying ; Li, Siqiao ; Han, Daobin ; Kong, Liangsheng ; Wang, Jianmin ; Zhao, Min ; Cheng, Wei ; Ju, Huangxian ; Yang, Zhongzhu ; Ding, Shijia</creator><creatorcontrib>Zheng, Ying ; Li, Siqiao ; Han, Daobin ; Kong, Liangsheng ; Wang, Jianmin ; Zhao, Min ; Cheng, Wei ; Ju, Huangxian ; Yang, Zhongzhu ; Ding, Shijia</creatorcontrib><description>Despite the ever-growing endangerment caused by the multidrug resistance (MDR) of bacteria, the development of effective antibacterial materials still remains a global challenge. Current antibiotic therapies cannot simultaneously inactivate bacteria and accelerate wound healing. This study aimed to originally separate the intercalation of MnO3 + and the oxidation processes to synthesize epoxy-rich graphene oxide (erGO) nanofilms via an eco-friendly synthetic route, which possessed low density and large lamellar distribution and was rich in epoxide. Importantly, the MnO3 + could be separated from the product and recycled for preparing the next generation of erGO nanofilms, which was quite economical and eco-friendly. The erGO nanofilm was capable of successfully inhibiting Gram-negative bacteria and even had excellent growth-inhibitory effects on Gram-positive bacteria including multidrug resistance (MDR) bacteria, as evidenced by antibacterial phenomena. Additionally, the erGO nanofilm with high •C density formed from epoxide exerted excellent antibacterial effects through tight membrane wrapping and induction of lipid peroxidation. The wound-healing property of the erGO nanofilm was evaluated via treatments of wounds infected by Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), which not only killed bacteria but also accelerated wound healing in mice with a skin infection. The novel erGO nanofilm with dual antimicrobial mechanisms might serve as a promising multifunctional antimicrobial agent for medical wound dressing with high biocompatibility.</description><identifier>ISSN: 2373-9878</identifier><identifier>EISSN: 2373-9878</identifier><identifier>DOI: 10.1021/acsbiomaterials.0c01598</identifier><identifier>PMID: 33494597</identifier><language>eng</language><publisher>WASHINGTON: American Chemical Society</publisher><subject>Animals ; Applications and Health ; Escherichia coli ; Graphite ; Materials Science ; Materials Science, Biomaterials ; Mice ; Science & Technology ; Staphylococcus aureus ; Technology ; Wound Healing</subject><ispartof>ACS biomaterials science & engineering, 2021-02, Vol.7 (2), p.752-763</ispartof><rights>2021 American Chemical Society</rights><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>14</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000618655200034</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a357t-f7b8eaabfcb0700b0edc95cab982091cdd36337201fee5428875589aee93850d3</citedby><cites>FETCH-LOGICAL-a357t-f7b8eaabfcb0700b0edc95cab982091cdd36337201fee5428875589aee93850d3</cites><orcidid>0000-0002-6741-5302 ; 0000-0002-1921-9761 ; 0000-0002-9183-1656 ; 0000-0002-1068-0412</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsbiomaterials.0c01598$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsbiomaterials.0c01598$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,39263,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33494597$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Ying</creatorcontrib><creatorcontrib>Li, Siqiao</creatorcontrib><creatorcontrib>Han, Daobin</creatorcontrib><creatorcontrib>Kong, Liangsheng</creatorcontrib><creatorcontrib>Wang, Jianmin</creatorcontrib><creatorcontrib>Zhao, Min</creatorcontrib><creatorcontrib>Cheng, Wei</creatorcontrib><creatorcontrib>Ju, Huangxian</creatorcontrib><creatorcontrib>Yang, Zhongzhu</creatorcontrib><creatorcontrib>Ding, Shijia</creatorcontrib><title>Eco-Friendly Preparation of Epoxy-Rich Graphene Oxide for Wound Healing</title><title>ACS biomaterials science & engineering</title><addtitle>ACS BIOMATER SCI ENG</addtitle><addtitle>ACS Biomater. Sci. Eng</addtitle><description>Despite the ever-growing endangerment caused by the multidrug resistance (MDR) of bacteria, the development of effective antibacterial materials still remains a global challenge. Current antibiotic therapies cannot simultaneously inactivate bacteria and accelerate wound healing. This study aimed to originally separate the intercalation of MnO3 + and the oxidation processes to synthesize epoxy-rich graphene oxide (erGO) nanofilms via an eco-friendly synthetic route, which possessed low density and large lamellar distribution and was rich in epoxide. Importantly, the MnO3 + could be separated from the product and recycled for preparing the next generation of erGO nanofilms, which was quite economical and eco-friendly. The erGO nanofilm was capable of successfully inhibiting Gram-negative bacteria and even had excellent growth-inhibitory effects on Gram-positive bacteria including multidrug resistance (MDR) bacteria, as evidenced by antibacterial phenomena. Additionally, the erGO nanofilm with high •C density formed from epoxide exerted excellent antibacterial effects through tight membrane wrapping and induction of lipid peroxidation. The wound-healing property of the erGO nanofilm was evaluated via treatments of wounds infected by Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), which not only killed bacteria but also accelerated wound healing in mice with a skin infection. The novel erGO nanofilm with dual antimicrobial mechanisms might serve as a promising multifunctional antimicrobial agent for medical wound dressing with high biocompatibility.</description><subject>Animals</subject><subject>Applications and Health</subject><subject>Escherichia coli</subject><subject>Graphite</subject><subject>Materials Science</subject><subject>Materials Science, Biomaterials</subject><subject>Mice</subject><subject>Science & Technology</subject><subject>Staphylococcus aureus</subject><subject>Technology</subject><subject>Wound Healing</subject><issn>2373-9878</issn><issn>2373-9878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><recordid>eNqNkF1LwzAUhoMoTtS_oL0UpJo0yZJcytiHMFBE8bKk6amLdE1NWtz-vZmbIt7o1TkXz3vOy4PQOcFXBGfkWptQWLfUHXir63CFDSZcyT10lFFBUyWF3P-xD9BpCK8YY0IlZ4wdogGlTDGuxBGajo1LJ95CU9br5N5Dq73urGsSVyXj1q3W6YM1i2TqdbuABpK7lS0hqZxPnl3flMkMdG2blxN0UMUucLqbx-hpMn4czdL53fR2dDNPNeWiSytRSNC6qEyBBcYFhtIobnShZIYVMWVJh5SKDJMKgLNMSsG5VBpAxfK4pMfoYnu39e6th9DlSxsM1LVuwPUhz5gkhDApSETFFjXeheChyltvl9qvc4Lzjcj8l8h8JzImz3ZP-mIJ5XfuS1sELrfAOxSuCibqM_CNRdVDIoecZ3GjLNLy__TIdp_-R9FuF6N0G41V81fX-2bT86_-H_2ypbQ</recordid><startdate>20210208</startdate><enddate>20210208</enddate><creator>Zheng, Ying</creator><creator>Li, Siqiao</creator><creator>Han, Daobin</creator><creator>Kong, Liangsheng</creator><creator>Wang, Jianmin</creator><creator>Zhao, Min</creator><creator>Cheng, Wei</creator><creator>Ju, Huangxian</creator><creator>Yang, Zhongzhu</creator><creator>Ding, Shijia</creator><general>American Chemical Society</general><general>Amer Chemical Soc</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6741-5302</orcidid><orcidid>https://orcid.org/0000-0002-1921-9761</orcidid><orcidid>https://orcid.org/0000-0002-9183-1656</orcidid><orcidid>https://orcid.org/0000-0002-1068-0412</orcidid></search><sort><creationdate>20210208</creationdate><title>Eco-Friendly Preparation of Epoxy-Rich Graphene Oxide for Wound Healing</title><author>Zheng, Ying ; Li, Siqiao ; Han, Daobin ; Kong, Liangsheng ; Wang, Jianmin ; Zhao, Min ; Cheng, Wei ; Ju, Huangxian ; Yang, Zhongzhu ; Ding, Shijia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a357t-f7b8eaabfcb0700b0edc95cab982091cdd36337201fee5428875589aee93850d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Applications and Health</topic><topic>Escherichia coli</topic><topic>Graphite</topic><topic>Materials Science</topic><topic>Materials Science, Biomaterials</topic><topic>Mice</topic><topic>Science & Technology</topic><topic>Staphylococcus aureus</topic><topic>Technology</topic><topic>Wound Healing</topic><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Ying</creatorcontrib><creatorcontrib>Li, Siqiao</creatorcontrib><creatorcontrib>Han, Daobin</creatorcontrib><creatorcontrib>Kong, Liangsheng</creatorcontrib><creatorcontrib>Wang, Jianmin</creatorcontrib><creatorcontrib>Zhao, Min</creatorcontrib><creatorcontrib>Cheng, Wei</creatorcontrib><creatorcontrib>Ju, Huangxian</creatorcontrib><creatorcontrib>Yang, Zhongzhu</creatorcontrib><creatorcontrib>Ding, Shijia</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS biomaterials science & engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Ying</au><au>Li, Siqiao</au><au>Han, Daobin</au><au>Kong, Liangsheng</au><au>Wang, Jianmin</au><au>Zhao, Min</au><au>Cheng, Wei</au><au>Ju, Huangxian</au><au>Yang, Zhongzhu</au><au>Ding, Shijia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eco-Friendly Preparation of Epoxy-Rich Graphene Oxide for Wound Healing</atitle><jtitle>ACS biomaterials science & engineering</jtitle><stitle>ACS BIOMATER SCI ENG</stitle><addtitle>ACS Biomater. Sci. Eng</addtitle><date>2021-02-08</date><risdate>2021</risdate><volume>7</volume><issue>2</issue><spage>752</spage><epage>763</epage><pages>752-763</pages><issn>2373-9878</issn><eissn>2373-9878</eissn><abstract>Despite the ever-growing endangerment caused by the multidrug resistance (MDR) of bacteria, the development of effective antibacterial materials still remains a global challenge. Current antibiotic therapies cannot simultaneously inactivate bacteria and accelerate wound healing. This study aimed to originally separate the intercalation of MnO3 + and the oxidation processes to synthesize epoxy-rich graphene oxide (erGO) nanofilms via an eco-friendly synthetic route, which possessed low density and large lamellar distribution and was rich in epoxide. Importantly, the MnO3 + could be separated from the product and recycled for preparing the next generation of erGO nanofilms, which was quite economical and eco-friendly. The erGO nanofilm was capable of successfully inhibiting Gram-negative bacteria and even had excellent growth-inhibitory effects on Gram-positive bacteria including multidrug resistance (MDR) bacteria, as evidenced by antibacterial phenomena. Additionally, the erGO nanofilm with high •C density formed from epoxide exerted excellent antibacterial effects through tight membrane wrapping and induction of lipid peroxidation. The wound-healing property of the erGO nanofilm was evaluated via treatments of wounds infected by Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), which not only killed bacteria but also accelerated wound healing in mice with a skin infection. The novel erGO nanofilm with dual antimicrobial mechanisms might serve as a promising multifunctional antimicrobial agent for medical wound dressing with high biocompatibility.</abstract><cop>WASHINGTON</cop><pub>American Chemical Society</pub><pmid>33494597</pmid><doi>10.1021/acsbiomaterials.0c01598</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6741-5302</orcidid><orcidid>https://orcid.org/0000-0002-1921-9761</orcidid><orcidid>https://orcid.org/0000-0002-9183-1656</orcidid><orcidid>https://orcid.org/0000-0002-1068-0412</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2373-9878 |
ispartof | ACS biomaterials science & engineering, 2021-02, Vol.7 (2), p.752-763 |
issn | 2373-9878 2373-9878 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acsbiomaterials_0c01598 |
source | MEDLINE; ACS Publications; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Animals Applications and Health Escherichia coli Graphite Materials Science Materials Science, Biomaterials Mice Science & Technology Staphylococcus aureus Technology Wound Healing |
title | Eco-Friendly Preparation of Epoxy-Rich Graphene Oxide for Wound Healing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T14%3A43%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eco-Friendly%20Preparation%20of%20Epoxy-Rich%20Graphene%20Oxide%20for%20Wound%20Healing&rft.jtitle=ACS%20biomaterials%20science%20&%20engineering&rft.au=Zheng,%20Ying&rft.date=2021-02-08&rft.volume=7&rft.issue=2&rft.spage=752&rft.epage=763&rft.pages=752-763&rft.issn=2373-9878&rft.eissn=2373-9878&rft_id=info:doi/10.1021/acsbiomaterials.0c01598&rft_dat=%3Cproquest_cross%3E2481114871%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2481114871&rft_id=info:pmid/33494597&rfr_iscdi=true |