A Polyethylene-Based Triblock Copolymer Anion Exchange Membrane with High Conductivity and Practical Mechanical Properties

A challenge in anion exchange membrane (AEM) development is simultaneously optimizing alkaline chemical stability and mechanical integrity during thermal and humidity cycling and achieving high anionic conductivity. Here, we report on the hydrogenation of an ABA triblock copolymer polychloro­methyls...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied polymer materials 2020-03, Vol.2 (3), p.1294-1303
Hauptverfasser: Buggy, Nora C, Du, Yifeng, Kuo, Mei-Chen, Ahrens, Kayla A, Wilkinson, Jacob S, Seifert, Soenke, Coughlin, E. Bryan, Herring, Andrew M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1303
container_issue 3
container_start_page 1294
container_title ACS applied polymer materials
container_volume 2
creator Buggy, Nora C
Du, Yifeng
Kuo, Mei-Chen
Ahrens, Kayla A
Wilkinson, Jacob S
Seifert, Soenke
Coughlin, E. Bryan
Herring, Andrew M
description A challenge in anion exchange membrane (AEM) development is simultaneously optimizing alkaline chemical stability and mechanical integrity during thermal and humidity cycling and achieving high anionic conductivity. Here, we report on the hydrogenation of an ABA triblock copolymer polychloro­methylstyrene-b-polycyclo­octene-b-polychloro­methylstyrene (PCMS-b-PCOE-b-PCMS) to yield a polyethylene-based triblock copolymer, polychloro­methylstyrene-b-polyethylene-b-polychloro­methylstyrene (PCMS-b-PE-b-PCMS). A polydisperse midblock was synthesized with narrowly disperse outer blocks to favor nanoscale phase separation and promote an interconnected morphology. Varying degrees of chemical cross-linking of the PCMS domains were achieved by using different processing temperatures to tune the water uptake and dimensional swelling. Quaternization with either trimethylamine or methylpiperidine resulted in AEMs with improved characteristics, including excellent Cl– and OH– conductivity (119 and 179 mS cm–1 at 80 °C, respectively) and moderate water uptake (33 wt %, λ = 12). Unexpectedly, extensional testing indicated that the mechanical strength of the film improved upon hydration. Wide-angle X-ray scattering revealed that in the presence of liquid water the PE backbone rearranges and forms larger crystalline domains, which led to the improved stress at break. These fundamental mechanistic insights are of critical importance in designing mechanically robust AEMs for aqueous applications such as electrolysis and reverse electrodialysis. This work demonstrates the applicability of tunable block copolymer systems for developing practical AEM materials for more modest pH liquid applications. Numerous tunable variables including chemical cross-linking and semicrystalline variability highlight how mechanical integrity, water management, and ionic conductivity can be simultaneously achieved.
doi_str_mv 10.1021/acsapm.9b01182
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsapm_9b01182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d148800603</sourcerecordid><originalsourceid>FETCH-LOGICAL-a274t-5bd04f057a309384db0825d5822424e41015a7496c0a6f880b6b3a4122e483a53</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EElXpyuwZKcV27MQdS1UoUhEdyhxdEqdxSezIToHw63FpBxam-3qf092L0C0lU0oYvYfCQ9dOZzmhVLILNGJJnEYJJeLyT36NJt7vCQkE40ywEfqe441tBtXXQ6OMih7AqxJvnc4bW7zjhe3CtFUOz422Bi-_ihrMTuEX1eYOjMKfuq_xSu_qoDXloej1h-4HDKbEGwehLKAJ6iP2m26c7ZTrtfI36KqCxqvJOY7R2-Nyu1hF69en58V8HQFLeR-JvCS8IiKFmMxiycucSCZKIVl4gStOCRWQ8llSEEgqKUme5DFwypjiMgYRj9H0tLdw1nunqqxzugU3ZJRkR_Oyk3nZ2bwA3J2A0M_29uBMOO8_8Q_FgnIH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Polyethylene-Based Triblock Copolymer Anion Exchange Membrane with High Conductivity and Practical Mechanical Properties</title><source>ACS Publications</source><creator>Buggy, Nora C ; Du, Yifeng ; Kuo, Mei-Chen ; Ahrens, Kayla A ; Wilkinson, Jacob S ; Seifert, Soenke ; Coughlin, E. Bryan ; Herring, Andrew M</creator><creatorcontrib>Buggy, Nora C ; Du, Yifeng ; Kuo, Mei-Chen ; Ahrens, Kayla A ; Wilkinson, Jacob S ; Seifert, Soenke ; Coughlin, E. Bryan ; Herring, Andrew M</creatorcontrib><description>A challenge in anion exchange membrane (AEM) development is simultaneously optimizing alkaline chemical stability and mechanical integrity during thermal and humidity cycling and achieving high anionic conductivity. Here, we report on the hydrogenation of an ABA triblock copolymer polychloro­methylstyrene-b-polycyclo­octene-b-polychloro­methylstyrene (PCMS-b-PCOE-b-PCMS) to yield a polyethylene-based triblock copolymer, polychloro­methylstyrene-b-polyethylene-b-polychloro­methylstyrene (PCMS-b-PE-b-PCMS). A polydisperse midblock was synthesized with narrowly disperse outer blocks to favor nanoscale phase separation and promote an interconnected morphology. Varying degrees of chemical cross-linking of the PCMS domains were achieved by using different processing temperatures to tune the water uptake and dimensional swelling. Quaternization with either trimethylamine or methylpiperidine resulted in AEMs with improved characteristics, including excellent Cl– and OH– conductivity (119 and 179 mS cm–1 at 80 °C, respectively) and moderate water uptake (33 wt %, λ = 12). Unexpectedly, extensional testing indicated that the mechanical strength of the film improved upon hydration. Wide-angle X-ray scattering revealed that in the presence of liquid water the PE backbone rearranges and forms larger crystalline domains, which led to the improved stress at break. These fundamental mechanistic insights are of critical importance in designing mechanically robust AEMs for aqueous applications such as electrolysis and reverse electrodialysis. This work demonstrates the applicability of tunable block copolymer systems for developing practical AEM materials for more modest pH liquid applications. Numerous tunable variables including chemical cross-linking and semicrystalline variability highlight how mechanical integrity, water management, and ionic conductivity can be simultaneously achieved.</description><identifier>ISSN: 2637-6105</identifier><identifier>EISSN: 2637-6105</identifier><identifier>DOI: 10.1021/acsapm.9b01182</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied polymer materials, 2020-03, Vol.2 (3), p.1294-1303</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a274t-5bd04f057a309384db0825d5822424e41015a7496c0a6f880b6b3a4122e483a53</citedby><cites>FETCH-LOGICAL-a274t-5bd04f057a309384db0825d5822424e41015a7496c0a6f880b6b3a4122e483a53</cites><orcidid>0000-0001-9040-337X ; 0000-0001-7318-5999 ; 0000-0001-7065-4366</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsapm.9b01182$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsapm.9b01182$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Buggy, Nora C</creatorcontrib><creatorcontrib>Du, Yifeng</creatorcontrib><creatorcontrib>Kuo, Mei-Chen</creatorcontrib><creatorcontrib>Ahrens, Kayla A</creatorcontrib><creatorcontrib>Wilkinson, Jacob S</creatorcontrib><creatorcontrib>Seifert, Soenke</creatorcontrib><creatorcontrib>Coughlin, E. Bryan</creatorcontrib><creatorcontrib>Herring, Andrew M</creatorcontrib><title>A Polyethylene-Based Triblock Copolymer Anion Exchange Membrane with High Conductivity and Practical Mechanical Properties</title><title>ACS applied polymer materials</title><addtitle>ACS Appl. Polym. Mater</addtitle><description>A challenge in anion exchange membrane (AEM) development is simultaneously optimizing alkaline chemical stability and mechanical integrity during thermal and humidity cycling and achieving high anionic conductivity. Here, we report on the hydrogenation of an ABA triblock copolymer polychloro­methylstyrene-b-polycyclo­octene-b-polychloro­methylstyrene (PCMS-b-PCOE-b-PCMS) to yield a polyethylene-based triblock copolymer, polychloro­methylstyrene-b-polyethylene-b-polychloro­methylstyrene (PCMS-b-PE-b-PCMS). A polydisperse midblock was synthesized with narrowly disperse outer blocks to favor nanoscale phase separation and promote an interconnected morphology. Varying degrees of chemical cross-linking of the PCMS domains were achieved by using different processing temperatures to tune the water uptake and dimensional swelling. Quaternization with either trimethylamine or methylpiperidine resulted in AEMs with improved characteristics, including excellent Cl– and OH– conductivity (119 and 179 mS cm–1 at 80 °C, respectively) and moderate water uptake (33 wt %, λ = 12). Unexpectedly, extensional testing indicated that the mechanical strength of the film improved upon hydration. Wide-angle X-ray scattering revealed that in the presence of liquid water the PE backbone rearranges and forms larger crystalline domains, which led to the improved stress at break. These fundamental mechanistic insights are of critical importance in designing mechanically robust AEMs for aqueous applications such as electrolysis and reverse electrodialysis. This work demonstrates the applicability of tunable block copolymer systems for developing practical AEM materials for more modest pH liquid applications. Numerous tunable variables including chemical cross-linking and semicrystalline variability highlight how mechanical integrity, water management, and ionic conductivity can be simultaneously achieved.</description><issn>2637-6105</issn><issn>2637-6105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EElXpyuwZKcV27MQdS1UoUhEdyhxdEqdxSezIToHw63FpBxam-3qf092L0C0lU0oYvYfCQ9dOZzmhVLILNGJJnEYJJeLyT36NJt7vCQkE40ywEfqe441tBtXXQ6OMih7AqxJvnc4bW7zjhe3CtFUOz422Bi-_ihrMTuEX1eYOjMKfuq_xSu_qoDXloej1h-4HDKbEGwehLKAJ6iP2m26c7ZTrtfI36KqCxqvJOY7R2-Nyu1hF69en58V8HQFLeR-JvCS8IiKFmMxiycucSCZKIVl4gStOCRWQ8llSEEgqKUme5DFwypjiMgYRj9H0tLdw1nunqqxzugU3ZJRkR_Oyk3nZ2bwA3J2A0M_29uBMOO8_8Q_FgnIH</recordid><startdate>20200313</startdate><enddate>20200313</enddate><creator>Buggy, Nora C</creator><creator>Du, Yifeng</creator><creator>Kuo, Mei-Chen</creator><creator>Ahrens, Kayla A</creator><creator>Wilkinson, Jacob S</creator><creator>Seifert, Soenke</creator><creator>Coughlin, E. Bryan</creator><creator>Herring, Andrew M</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9040-337X</orcidid><orcidid>https://orcid.org/0000-0001-7318-5999</orcidid><orcidid>https://orcid.org/0000-0001-7065-4366</orcidid></search><sort><creationdate>20200313</creationdate><title>A Polyethylene-Based Triblock Copolymer Anion Exchange Membrane with High Conductivity and Practical Mechanical Properties</title><author>Buggy, Nora C ; Du, Yifeng ; Kuo, Mei-Chen ; Ahrens, Kayla A ; Wilkinson, Jacob S ; Seifert, Soenke ; Coughlin, E. Bryan ; Herring, Andrew M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a274t-5bd04f057a309384db0825d5822424e41015a7496c0a6f880b6b3a4122e483a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buggy, Nora C</creatorcontrib><creatorcontrib>Du, Yifeng</creatorcontrib><creatorcontrib>Kuo, Mei-Chen</creatorcontrib><creatorcontrib>Ahrens, Kayla A</creatorcontrib><creatorcontrib>Wilkinson, Jacob S</creatorcontrib><creatorcontrib>Seifert, Soenke</creatorcontrib><creatorcontrib>Coughlin, E. Bryan</creatorcontrib><creatorcontrib>Herring, Andrew M</creatorcontrib><collection>CrossRef</collection><jtitle>ACS applied polymer materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buggy, Nora C</au><au>Du, Yifeng</au><au>Kuo, Mei-Chen</au><au>Ahrens, Kayla A</au><au>Wilkinson, Jacob S</au><au>Seifert, Soenke</au><au>Coughlin, E. Bryan</au><au>Herring, Andrew M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Polyethylene-Based Triblock Copolymer Anion Exchange Membrane with High Conductivity and Practical Mechanical Properties</atitle><jtitle>ACS applied polymer materials</jtitle><addtitle>ACS Appl. Polym. Mater</addtitle><date>2020-03-13</date><risdate>2020</risdate><volume>2</volume><issue>3</issue><spage>1294</spage><epage>1303</epage><pages>1294-1303</pages><issn>2637-6105</issn><eissn>2637-6105</eissn><abstract>A challenge in anion exchange membrane (AEM) development is simultaneously optimizing alkaline chemical stability and mechanical integrity during thermal and humidity cycling and achieving high anionic conductivity. Here, we report on the hydrogenation of an ABA triblock copolymer polychloro­methylstyrene-b-polycyclo­octene-b-polychloro­methylstyrene (PCMS-b-PCOE-b-PCMS) to yield a polyethylene-based triblock copolymer, polychloro­methylstyrene-b-polyethylene-b-polychloro­methylstyrene (PCMS-b-PE-b-PCMS). A polydisperse midblock was synthesized with narrowly disperse outer blocks to favor nanoscale phase separation and promote an interconnected morphology. Varying degrees of chemical cross-linking of the PCMS domains were achieved by using different processing temperatures to tune the water uptake and dimensional swelling. Quaternization with either trimethylamine or methylpiperidine resulted in AEMs with improved characteristics, including excellent Cl– and OH– conductivity (119 and 179 mS cm–1 at 80 °C, respectively) and moderate water uptake (33 wt %, λ = 12). Unexpectedly, extensional testing indicated that the mechanical strength of the film improved upon hydration. Wide-angle X-ray scattering revealed that in the presence of liquid water the PE backbone rearranges and forms larger crystalline domains, which led to the improved stress at break. These fundamental mechanistic insights are of critical importance in designing mechanically robust AEMs for aqueous applications such as electrolysis and reverse electrodialysis. This work demonstrates the applicability of tunable block copolymer systems for developing practical AEM materials for more modest pH liquid applications. Numerous tunable variables including chemical cross-linking and semicrystalline variability highlight how mechanical integrity, water management, and ionic conductivity can be simultaneously achieved.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsapm.9b01182</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9040-337X</orcidid><orcidid>https://orcid.org/0000-0001-7318-5999</orcidid><orcidid>https://orcid.org/0000-0001-7065-4366</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2637-6105
ispartof ACS applied polymer materials, 2020-03, Vol.2 (3), p.1294-1303
issn 2637-6105
2637-6105
language eng
recordid cdi_crossref_primary_10_1021_acsapm_9b01182
source ACS Publications
title A Polyethylene-Based Triblock Copolymer Anion Exchange Membrane with High Conductivity and Practical Mechanical Properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T10%3A50%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Polyethylene-Based%20Triblock%20Copolymer%20Anion%20Exchange%20Membrane%20with%20High%20Conductivity%20and%20Practical%20Mechanical%20Properties&rft.jtitle=ACS%20applied%20polymer%20materials&rft.au=Buggy,%20Nora%20C&rft.date=2020-03-13&rft.volume=2&rft.issue=3&rft.spage=1294&rft.epage=1303&rft.pages=1294-1303&rft.issn=2637-6105&rft.eissn=2637-6105&rft_id=info:doi/10.1021/acsapm.9b01182&rft_dat=%3Cacs_cross%3Ed148800603%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true