Fabrication of Shaped Chitin Fibers by Gradient Regeneration Combined with a Physical Pressure Method

The exigency within the textile industry for molded fibers has become increasingly pronounced, owing to the coveted attributes inherent in planar fiber products, namely, their luxuriant tactile quality, ethereal weightiness, and avant-garde allure. In this investigation, we propose a pioneering meth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied polymer materials 2024-01, Vol.6 (2), p.1286-1293
Hauptverfasser: Liang, Yaoting, Jiang, Ning, Liu, Xinglin, Nie, Ling, Song, Dengpeng, Jiang, Liquan, Yu, Hao, Xu, Weilin, Zhu, Kunkun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1293
container_issue 2
container_start_page 1286
container_title ACS applied polymer materials
container_volume 6
creator Liang, Yaoting
Jiang, Ning
Liu, Xinglin
Nie, Ling
Song, Dengpeng
Jiang, Liquan
Yu, Hao
Xu, Weilin
Zhu, Kunkun
description The exigency within the textile industry for molded fibers has become increasingly pronounced, owing to the coveted attributes inherent in planar fiber products, namely, their luxuriant tactile quality, ethereal weightiness, and avant-garde allure. In this investigation, we propose a pioneering methodology for the synthesis of planar chitin fibers, diverging from the conventional paradigm of spinneret design for fiber shaping. Analytical methodologies, encompassing Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and optical microscopy, were judiciously harnessed to unravel the intricacies of the fiber formation process. By subjecting chitin fibers to coagulation baths infused with phytic acid, a stratified dermal-core architecture was engendered, endowing the fibers with remarkable malleability under exogenic forces, thereby culminating in the homogeneous production of planar chitin fibers. Thorough scrutiny through optical microscopy and cross-sectional analysis substantiates the efficacy of this innovative approach. These revelations not only bestow invaluable insights into the fabrication of planar fibers but also broaden the horizons of potential chitin applications across multifarious domains.
doi_str_mv 10.1021/acsapm.3c02277
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsapm_3c02277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>h54041592</sourcerecordid><originalsourceid>FETCH-LOGICAL-a229t-eb27e20b5353bfd22af3825d8366bf53767052fc0fdc323f8030642585d38dd23</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMouKx79Zyz0JpOTFuPUuwqrLj4cS5JM7FZtu2SZJH-90a6By-eZhje7zHvEXKdsTRjkN3K1stDn_KWARTFGVlAzoskz5g4_7NfkpX3O8YiAXcgYEGwlsrZVgY7DnQ09L2TB9S06mywA62tQuepmujaSW1xCPQNv3BANwPV2Cs7RP23DR2VdNtNPprt6dah90eH9AVDN-orcmHk3uPqNJfks378qJ6Szev6uXrYJBLgPiSooEBgSnDBldEA0vAShC55nisjeJEXTIBpmdEtB25Kxlkec5RC81Jr4EuSzr6tG713aJqDs710U5Ox5renZu6pOfUUgZsZiPdmNx7dEN_7T_wDP2lqkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fabrication of Shaped Chitin Fibers by Gradient Regeneration Combined with a Physical Pressure Method</title><source>ACS Publications</source><creator>Liang, Yaoting ; Jiang, Ning ; Liu, Xinglin ; Nie, Ling ; Song, Dengpeng ; Jiang, Liquan ; Yu, Hao ; Xu, Weilin ; Zhu, Kunkun</creator><creatorcontrib>Liang, Yaoting ; Jiang, Ning ; Liu, Xinglin ; Nie, Ling ; Song, Dengpeng ; Jiang, Liquan ; Yu, Hao ; Xu, Weilin ; Zhu, Kunkun</creatorcontrib><description>The exigency within the textile industry for molded fibers has become increasingly pronounced, owing to the coveted attributes inherent in planar fiber products, namely, their luxuriant tactile quality, ethereal weightiness, and avant-garde allure. In this investigation, we propose a pioneering methodology for the synthesis of planar chitin fibers, diverging from the conventional paradigm of spinneret design for fiber shaping. Analytical methodologies, encompassing Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and optical microscopy, were judiciously harnessed to unravel the intricacies of the fiber formation process. By subjecting chitin fibers to coagulation baths infused with phytic acid, a stratified dermal-core architecture was engendered, endowing the fibers with remarkable malleability under exogenic forces, thereby culminating in the homogeneous production of planar chitin fibers. Thorough scrutiny through optical microscopy and cross-sectional analysis substantiates the efficacy of this innovative approach. These revelations not only bestow invaluable insights into the fabrication of planar fibers but also broaden the horizons of potential chitin applications across multifarious domains.</description><identifier>ISSN: 2637-6105</identifier><identifier>EISSN: 2637-6105</identifier><identifier>DOI: 10.1021/acsapm.3c02277</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied polymer materials, 2024-01, Vol.6 (2), p.1286-1293</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a229t-eb27e20b5353bfd22af3825d8366bf53767052fc0fdc323f8030642585d38dd23</cites><orcidid>0000-0002-7619-0707 ; 0000-0002-1288-9738 ; 0000-0003-3228-4338</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsapm.3c02277$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsapm.3c02277$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27074,27922,27923,56736,56786</link.rule.ids></links><search><creatorcontrib>Liang, Yaoting</creatorcontrib><creatorcontrib>Jiang, Ning</creatorcontrib><creatorcontrib>Liu, Xinglin</creatorcontrib><creatorcontrib>Nie, Ling</creatorcontrib><creatorcontrib>Song, Dengpeng</creatorcontrib><creatorcontrib>Jiang, Liquan</creatorcontrib><creatorcontrib>Yu, Hao</creatorcontrib><creatorcontrib>Xu, Weilin</creatorcontrib><creatorcontrib>Zhu, Kunkun</creatorcontrib><title>Fabrication of Shaped Chitin Fibers by Gradient Regeneration Combined with a Physical Pressure Method</title><title>ACS applied polymer materials</title><addtitle>ACS Appl. Polym. Mater</addtitle><description>The exigency within the textile industry for molded fibers has become increasingly pronounced, owing to the coveted attributes inherent in planar fiber products, namely, their luxuriant tactile quality, ethereal weightiness, and avant-garde allure. In this investigation, we propose a pioneering methodology for the synthesis of planar chitin fibers, diverging from the conventional paradigm of spinneret design for fiber shaping. Analytical methodologies, encompassing Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and optical microscopy, were judiciously harnessed to unravel the intricacies of the fiber formation process. By subjecting chitin fibers to coagulation baths infused with phytic acid, a stratified dermal-core architecture was engendered, endowing the fibers with remarkable malleability under exogenic forces, thereby culminating in the homogeneous production of planar chitin fibers. Thorough scrutiny through optical microscopy and cross-sectional analysis substantiates the efficacy of this innovative approach. These revelations not only bestow invaluable insights into the fabrication of planar fibers but also broaden the horizons of potential chitin applications across multifarious domains.</description><issn>2637-6105</issn><issn>2637-6105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LxDAQxYMouKx79Zyz0JpOTFuPUuwqrLj4cS5JM7FZtu2SZJH-90a6By-eZhje7zHvEXKdsTRjkN3K1stDn_KWARTFGVlAzoskz5g4_7NfkpX3O8YiAXcgYEGwlsrZVgY7DnQ09L2TB9S06mywA62tQuepmujaSW1xCPQNv3BANwPV2Cs7RP23DR2VdNtNPprt6dah90eH9AVDN-orcmHk3uPqNJfks378qJ6Szev6uXrYJBLgPiSooEBgSnDBldEA0vAShC55nisjeJEXTIBpmdEtB25Kxlkec5RC81Jr4EuSzr6tG713aJqDs710U5Ox5renZu6pOfUUgZsZiPdmNx7dEN_7T_wDP2lqkg</recordid><startdate>20240126</startdate><enddate>20240126</enddate><creator>Liang, Yaoting</creator><creator>Jiang, Ning</creator><creator>Liu, Xinglin</creator><creator>Nie, Ling</creator><creator>Song, Dengpeng</creator><creator>Jiang, Liquan</creator><creator>Yu, Hao</creator><creator>Xu, Weilin</creator><creator>Zhu, Kunkun</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7619-0707</orcidid><orcidid>https://orcid.org/0000-0002-1288-9738</orcidid><orcidid>https://orcid.org/0000-0003-3228-4338</orcidid></search><sort><creationdate>20240126</creationdate><title>Fabrication of Shaped Chitin Fibers by Gradient Regeneration Combined with a Physical Pressure Method</title><author>Liang, Yaoting ; Jiang, Ning ; Liu, Xinglin ; Nie, Ling ; Song, Dengpeng ; Jiang, Liquan ; Yu, Hao ; Xu, Weilin ; Zhu, Kunkun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a229t-eb27e20b5353bfd22af3825d8366bf53767052fc0fdc323f8030642585d38dd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Yaoting</creatorcontrib><creatorcontrib>Jiang, Ning</creatorcontrib><creatorcontrib>Liu, Xinglin</creatorcontrib><creatorcontrib>Nie, Ling</creatorcontrib><creatorcontrib>Song, Dengpeng</creatorcontrib><creatorcontrib>Jiang, Liquan</creatorcontrib><creatorcontrib>Yu, Hao</creatorcontrib><creatorcontrib>Xu, Weilin</creatorcontrib><creatorcontrib>Zhu, Kunkun</creatorcontrib><collection>CrossRef</collection><jtitle>ACS applied polymer materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Yaoting</au><au>Jiang, Ning</au><au>Liu, Xinglin</au><au>Nie, Ling</au><au>Song, Dengpeng</au><au>Jiang, Liquan</au><au>Yu, Hao</au><au>Xu, Weilin</au><au>Zhu, Kunkun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of Shaped Chitin Fibers by Gradient Regeneration Combined with a Physical Pressure Method</atitle><jtitle>ACS applied polymer materials</jtitle><addtitle>ACS Appl. Polym. Mater</addtitle><date>2024-01-26</date><risdate>2024</risdate><volume>6</volume><issue>2</issue><spage>1286</spage><epage>1293</epage><pages>1286-1293</pages><issn>2637-6105</issn><eissn>2637-6105</eissn><abstract>The exigency within the textile industry for molded fibers has become increasingly pronounced, owing to the coveted attributes inherent in planar fiber products, namely, their luxuriant tactile quality, ethereal weightiness, and avant-garde allure. In this investigation, we propose a pioneering methodology for the synthesis of planar chitin fibers, diverging from the conventional paradigm of spinneret design for fiber shaping. Analytical methodologies, encompassing Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and optical microscopy, were judiciously harnessed to unravel the intricacies of the fiber formation process. By subjecting chitin fibers to coagulation baths infused with phytic acid, a stratified dermal-core architecture was engendered, endowing the fibers with remarkable malleability under exogenic forces, thereby culminating in the homogeneous production of planar chitin fibers. Thorough scrutiny through optical microscopy and cross-sectional analysis substantiates the efficacy of this innovative approach. These revelations not only bestow invaluable insights into the fabrication of planar fibers but also broaden the horizons of potential chitin applications across multifarious domains.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsapm.3c02277</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7619-0707</orcidid><orcidid>https://orcid.org/0000-0002-1288-9738</orcidid><orcidid>https://orcid.org/0000-0003-3228-4338</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2637-6105
ispartof ACS applied polymer materials, 2024-01, Vol.6 (2), p.1286-1293
issn 2637-6105
2637-6105
language eng
recordid cdi_crossref_primary_10_1021_acsapm_3c02277
source ACS Publications
title Fabrication of Shaped Chitin Fibers by Gradient Regeneration Combined with a Physical Pressure Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T09%3A53%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20Shaped%20Chitin%20Fibers%20by%20Gradient%20Regeneration%20Combined%20with%20a%20Physical%20Pressure%20Method&rft.jtitle=ACS%20applied%20polymer%20materials&rft.au=Liang,%20Yaoting&rft.date=2024-01-26&rft.volume=6&rft.issue=2&rft.spage=1286&rft.epage=1293&rft.pages=1286-1293&rft.issn=2637-6105&rft.eissn=2637-6105&rft_id=info:doi/10.1021/acsapm.3c02277&rft_dat=%3Cacs_cross%3Eh54041592%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true