Ternary Poly(ethylene oxide)/Poly(l,l‑lactide) PEO/PLA Blends as High-Temperature Solid Polymer Electrolytes for Lithium Batteries

Lithium batteries are in high demand in different technological fields. However, the operating temperature is required to be below 70 °C, and this limits their use in applications demanding high-energy rechargeable batteries that are able to operate at temperatures above 100 °C. Poly­(ethylene oxide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied polymer materials 2021-12, Vol.3 (12), p.6326-6337
Hauptverfasser: Olmedo-Martínez, Jorge L, Porcarelli, Luca, Guzmán-González, Gregorio, Calafel, Itxaso, Forsyth, Maria, Mecerreyes, David, Müller, Alejandro J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6337
container_issue 12
container_start_page 6326
container_title ACS applied polymer materials
container_volume 3
creator Olmedo-Martínez, Jorge L
Porcarelli, Luca
Guzmán-González, Gregorio
Calafel, Itxaso
Forsyth, Maria
Mecerreyes, David
Müller, Alejandro J
description Lithium batteries are in high demand in different technological fields. However, the operating temperature is required to be below 70 °C, and this limits their use in applications demanding high-energy rechargeable batteries that are able to operate at temperatures above 100 °C. Poly­(ethylene oxide) (PEO) is, currently, the reference solid polymer electrolyte (SPE) employed in solid-state lithium batteries. However, the application of PEO at higher temperatures is restricted due to the loss of mechanical properties. In this article, we show that the polymer blending strategy of blending PEO with poly­(l,l-lactide) (PLA) allows extending its use in batteries at high temperatures (100 °C). This improvement is due to the mechanical reinforcement of PEO solid electrolytes associated with the presence of PLA crystals. Thus, two solid electrolyte systems based on PEO/PLA blends with either a LiTFSI salt or a lithium single-ion polymer (poly­(lithium-1-[3-(methacryloyloxy)­propylsulfonyl]-1-(trifluoromethanesulfonyl)­imide), PLiMTFSI) were investigated and compared. Differential scanning calorimetry (DSC) results indicate that regardless of the concentration of LiTFSI or PLiMTFSI in the blend, crystals of PLA are present with melting peaks at 160–170 °C and the lithium salt distributes preferentially in the PEO-rich amorphous phases. The ionic conductivity is negatively affected by the incorporation of PLA in the blends. However, at high temperatures (>70 °C), ionic conductivities of ∼10–4 S cm–1 were obtained for both systems. DMTA results showed that PLA addition increases the mechanical properties of the electrolytes, yielding storage modulus values of ∼106 Pa for the PEO/PLA/LiTFSI blend and ∼107 Pa or higher for the PEO/PLA/PLiMTFSI blend at high temperatures (100 °C). Finally, both ternary blends were compared in a symmetrical lithium battery at 100 °C, and the single-ion conducting PEO/PLA/PLiMTFSI system presented lower overpotentials, which is reflected in a lower polarization inside the lithium battery.
doi_str_mv 10.1021/acsapm.1c01093
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsapm_1c01093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a424954904</sourcerecordid><originalsourceid>FETCH-LOGICAL-a314t-604f86311fa7feb71e34f50637335ede4dfa93a81304a9bcef9655c1917eafe23</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EElXplbOPgEjrjfPTHNsqUKRIrUQ5R26ypq6cprJdid448AK8Ik-C-3Pgwml3RzMrzUfILbA-sBAGorJi2_ShYsAyfkE6YcLTIAEWX_7Zr0nP2jVjPhFGYRx2yNcCzUaYPZ23en-HbrXXuEHafqga7wdHUT_qn89vLSp30Og8nw3mxYiOvbG2VFg6Ve-rYIHNFo1wO4P0tdWqPn5s0NBcY-WMPxxaKltDC-VWatfQsXAOjUJ7Q66k0BZ759klb0_5YjINitnzy2RUBIJD5IKERXKYcAApUonLFJBHMma-HOcx1hjVUmRcDIGzSGTLCmWWxHEFGaQoJIa8S_qnv5VprTUoy61RjW9fAisPGMsTxvKM0QceTgGvl-t251Fp-5_5F53HdyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ternary Poly(ethylene oxide)/Poly(l,l‑lactide) PEO/PLA Blends as High-Temperature Solid Polymer Electrolytes for Lithium Batteries</title><source>American Chemical Society Publications</source><creator>Olmedo-Martínez, Jorge L ; Porcarelli, Luca ; Guzmán-González, Gregorio ; Calafel, Itxaso ; Forsyth, Maria ; Mecerreyes, David ; Müller, Alejandro J</creator><creatorcontrib>Olmedo-Martínez, Jorge L ; Porcarelli, Luca ; Guzmán-González, Gregorio ; Calafel, Itxaso ; Forsyth, Maria ; Mecerreyes, David ; Müller, Alejandro J</creatorcontrib><description>Lithium batteries are in high demand in different technological fields. However, the operating temperature is required to be below 70 °C, and this limits their use in applications demanding high-energy rechargeable batteries that are able to operate at temperatures above 100 °C. Poly­(ethylene oxide) (PEO) is, currently, the reference solid polymer electrolyte (SPE) employed in solid-state lithium batteries. However, the application of PEO at higher temperatures is restricted due to the loss of mechanical properties. In this article, we show that the polymer blending strategy of blending PEO with poly­(l,l-lactide) (PLA) allows extending its use in batteries at high temperatures (100 °C). This improvement is due to the mechanical reinforcement of PEO solid electrolytes associated with the presence of PLA crystals. Thus, two solid electrolyte systems based on PEO/PLA blends with either a LiTFSI salt or a lithium single-ion polymer (poly­(lithium-1-[3-(methacryloyloxy)­propylsulfonyl]-1-(trifluoromethanesulfonyl)­imide), PLiMTFSI) were investigated and compared. Differential scanning calorimetry (DSC) results indicate that regardless of the concentration of LiTFSI or PLiMTFSI in the blend, crystals of PLA are present with melting peaks at 160–170 °C and the lithium salt distributes preferentially in the PEO-rich amorphous phases. The ionic conductivity is negatively affected by the incorporation of PLA in the blends. However, at high temperatures (&gt;70 °C), ionic conductivities of ∼10–4 S cm–1 were obtained for both systems. DMTA results showed that PLA addition increases the mechanical properties of the electrolytes, yielding storage modulus values of ∼106 Pa for the PEO/PLA/LiTFSI blend and ∼107 Pa or higher for the PEO/PLA/PLiMTFSI blend at high temperatures (100 °C). Finally, both ternary blends were compared in a symmetrical lithium battery at 100 °C, and the single-ion conducting PEO/PLA/PLiMTFSI system presented lower overpotentials, which is reflected in a lower polarization inside the lithium battery.</description><identifier>ISSN: 2637-6105</identifier><identifier>EISSN: 2637-6105</identifier><identifier>DOI: 10.1021/acsapm.1c01093</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied polymer materials, 2021-12, Vol.3 (12), p.6326-6337</ispartof><rights>2021 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a314t-604f86311fa7feb71e34f50637335ede4dfa93a81304a9bcef9655c1917eafe23</citedby><cites>FETCH-LOGICAL-a314t-604f86311fa7feb71e34f50637335ede4dfa93a81304a9bcef9655c1917eafe23</cites><orcidid>0000-0002-0788-7156 ; 0000-0001-7009-7715 ; 0000-0003-1033-3522 ; 0000-0002-4273-8105 ; 0000-0002-8080-0862 ; 0000-0002-1624-382X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsapm.1c01093$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsapm.1c01093$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2756,27067,27915,27916,56729,56779</link.rule.ids></links><search><creatorcontrib>Olmedo-Martínez, Jorge L</creatorcontrib><creatorcontrib>Porcarelli, Luca</creatorcontrib><creatorcontrib>Guzmán-González, Gregorio</creatorcontrib><creatorcontrib>Calafel, Itxaso</creatorcontrib><creatorcontrib>Forsyth, Maria</creatorcontrib><creatorcontrib>Mecerreyes, David</creatorcontrib><creatorcontrib>Müller, Alejandro J</creatorcontrib><title>Ternary Poly(ethylene oxide)/Poly(l,l‑lactide) PEO/PLA Blends as High-Temperature Solid Polymer Electrolytes for Lithium Batteries</title><title>ACS applied polymer materials</title><addtitle>ACS Appl. Polym. Mater</addtitle><description>Lithium batteries are in high demand in different technological fields. However, the operating temperature is required to be below 70 °C, and this limits their use in applications demanding high-energy rechargeable batteries that are able to operate at temperatures above 100 °C. Poly­(ethylene oxide) (PEO) is, currently, the reference solid polymer electrolyte (SPE) employed in solid-state lithium batteries. However, the application of PEO at higher temperatures is restricted due to the loss of mechanical properties. In this article, we show that the polymer blending strategy of blending PEO with poly­(l,l-lactide) (PLA) allows extending its use in batteries at high temperatures (100 °C). This improvement is due to the mechanical reinforcement of PEO solid electrolytes associated with the presence of PLA crystals. Thus, two solid electrolyte systems based on PEO/PLA blends with either a LiTFSI salt or a lithium single-ion polymer (poly­(lithium-1-[3-(methacryloyloxy)­propylsulfonyl]-1-(trifluoromethanesulfonyl)­imide), PLiMTFSI) were investigated and compared. Differential scanning calorimetry (DSC) results indicate that regardless of the concentration of LiTFSI or PLiMTFSI in the blend, crystals of PLA are present with melting peaks at 160–170 °C and the lithium salt distributes preferentially in the PEO-rich amorphous phases. The ionic conductivity is negatively affected by the incorporation of PLA in the blends. However, at high temperatures (&gt;70 °C), ionic conductivities of ∼10–4 S cm–1 were obtained for both systems. DMTA results showed that PLA addition increases the mechanical properties of the electrolytes, yielding storage modulus values of ∼106 Pa for the PEO/PLA/LiTFSI blend and ∼107 Pa or higher for the PEO/PLA/PLiMTFSI blend at high temperatures (100 °C). Finally, both ternary blends were compared in a symmetrical lithium battery at 100 °C, and the single-ion conducting PEO/PLA/PLiMTFSI system presented lower overpotentials, which is reflected in a lower polarization inside the lithium battery.</description><issn>2637-6105</issn><issn>2637-6105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhC0EElXplbOPgEjrjfPTHNsqUKRIrUQ5R26ypq6cprJdid448AK8Ik-C-3Pgwml3RzMrzUfILbA-sBAGorJi2_ShYsAyfkE6YcLTIAEWX_7Zr0nP2jVjPhFGYRx2yNcCzUaYPZ23en-HbrXXuEHafqga7wdHUT_qn89vLSp30Og8nw3mxYiOvbG2VFg6Ve-rYIHNFo1wO4P0tdWqPn5s0NBcY-WMPxxaKltDC-VWatfQsXAOjUJ7Q66k0BZ759klb0_5YjINitnzy2RUBIJD5IKERXKYcAApUonLFJBHMma-HOcx1hjVUmRcDIGzSGTLCmWWxHEFGaQoJIa8S_qnv5VprTUoy61RjW9fAisPGMsTxvKM0QceTgGvl-t251Fp-5_5F53HdyA</recordid><startdate>20211210</startdate><enddate>20211210</enddate><creator>Olmedo-Martínez, Jorge L</creator><creator>Porcarelli, Luca</creator><creator>Guzmán-González, Gregorio</creator><creator>Calafel, Itxaso</creator><creator>Forsyth, Maria</creator><creator>Mecerreyes, David</creator><creator>Müller, Alejandro J</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0788-7156</orcidid><orcidid>https://orcid.org/0000-0001-7009-7715</orcidid><orcidid>https://orcid.org/0000-0003-1033-3522</orcidid><orcidid>https://orcid.org/0000-0002-4273-8105</orcidid><orcidid>https://orcid.org/0000-0002-8080-0862</orcidid><orcidid>https://orcid.org/0000-0002-1624-382X</orcidid></search><sort><creationdate>20211210</creationdate><title>Ternary Poly(ethylene oxide)/Poly(l,l‑lactide) PEO/PLA Blends as High-Temperature Solid Polymer Electrolytes for Lithium Batteries</title><author>Olmedo-Martínez, Jorge L ; Porcarelli, Luca ; Guzmán-González, Gregorio ; Calafel, Itxaso ; Forsyth, Maria ; Mecerreyes, David ; Müller, Alejandro J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a314t-604f86311fa7feb71e34f50637335ede4dfa93a81304a9bcef9655c1917eafe23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olmedo-Martínez, Jorge L</creatorcontrib><creatorcontrib>Porcarelli, Luca</creatorcontrib><creatorcontrib>Guzmán-González, Gregorio</creatorcontrib><creatorcontrib>Calafel, Itxaso</creatorcontrib><creatorcontrib>Forsyth, Maria</creatorcontrib><creatorcontrib>Mecerreyes, David</creatorcontrib><creatorcontrib>Müller, Alejandro J</creatorcontrib><collection>CrossRef</collection><jtitle>ACS applied polymer materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olmedo-Martínez, Jorge L</au><au>Porcarelli, Luca</au><au>Guzmán-González, Gregorio</au><au>Calafel, Itxaso</au><au>Forsyth, Maria</au><au>Mecerreyes, David</au><au>Müller, Alejandro J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ternary Poly(ethylene oxide)/Poly(l,l‑lactide) PEO/PLA Blends as High-Temperature Solid Polymer Electrolytes for Lithium Batteries</atitle><jtitle>ACS applied polymer materials</jtitle><addtitle>ACS Appl. Polym. Mater</addtitle><date>2021-12-10</date><risdate>2021</risdate><volume>3</volume><issue>12</issue><spage>6326</spage><epage>6337</epage><pages>6326-6337</pages><issn>2637-6105</issn><eissn>2637-6105</eissn><abstract>Lithium batteries are in high demand in different technological fields. However, the operating temperature is required to be below 70 °C, and this limits their use in applications demanding high-energy rechargeable batteries that are able to operate at temperatures above 100 °C. Poly­(ethylene oxide) (PEO) is, currently, the reference solid polymer electrolyte (SPE) employed in solid-state lithium batteries. However, the application of PEO at higher temperatures is restricted due to the loss of mechanical properties. In this article, we show that the polymer blending strategy of blending PEO with poly­(l,l-lactide) (PLA) allows extending its use in batteries at high temperatures (100 °C). This improvement is due to the mechanical reinforcement of PEO solid electrolytes associated with the presence of PLA crystals. Thus, two solid electrolyte systems based on PEO/PLA blends with either a LiTFSI salt or a lithium single-ion polymer (poly­(lithium-1-[3-(methacryloyloxy)­propylsulfonyl]-1-(trifluoromethanesulfonyl)­imide), PLiMTFSI) were investigated and compared. Differential scanning calorimetry (DSC) results indicate that regardless of the concentration of LiTFSI or PLiMTFSI in the blend, crystals of PLA are present with melting peaks at 160–170 °C and the lithium salt distributes preferentially in the PEO-rich amorphous phases. The ionic conductivity is negatively affected by the incorporation of PLA in the blends. However, at high temperatures (&gt;70 °C), ionic conductivities of ∼10–4 S cm–1 were obtained for both systems. DMTA results showed that PLA addition increases the mechanical properties of the electrolytes, yielding storage modulus values of ∼106 Pa for the PEO/PLA/LiTFSI blend and ∼107 Pa or higher for the PEO/PLA/PLiMTFSI blend at high temperatures (100 °C). Finally, both ternary blends were compared in a symmetrical lithium battery at 100 °C, and the single-ion conducting PEO/PLA/PLiMTFSI system presented lower overpotentials, which is reflected in a lower polarization inside the lithium battery.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsapm.1c01093</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0788-7156</orcidid><orcidid>https://orcid.org/0000-0001-7009-7715</orcidid><orcidid>https://orcid.org/0000-0003-1033-3522</orcidid><orcidid>https://orcid.org/0000-0002-4273-8105</orcidid><orcidid>https://orcid.org/0000-0002-8080-0862</orcidid><orcidid>https://orcid.org/0000-0002-1624-382X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2637-6105
ispartof ACS applied polymer materials, 2021-12, Vol.3 (12), p.6326-6337
issn 2637-6105
2637-6105
language eng
recordid cdi_crossref_primary_10_1021_acsapm_1c01093
source American Chemical Society Publications
title Ternary Poly(ethylene oxide)/Poly(l,l‑lactide) PEO/PLA Blends as High-Temperature Solid Polymer Electrolytes for Lithium Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T19%3A04%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ternary%20Poly(ethylene%20oxide)/Poly(l,l%E2%80%91lactide)%20PEO/PLA%20Blends%20as%20High-Temperature%20Solid%20Polymer%20Electrolytes%20for%20Lithium%20Batteries&rft.jtitle=ACS%20applied%20polymer%20materials&rft.au=Olmedo-Marti%CC%81nez,%20Jorge%20L&rft.date=2021-12-10&rft.volume=3&rft.issue=12&rft.spage=6326&rft.epage=6337&rft.pages=6326-6337&rft.issn=2637-6105&rft.eissn=2637-6105&rft_id=info:doi/10.1021/acsapm.1c01093&rft_dat=%3Cacs_cross%3Ea424954904%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true