Analyzing the Nanogranularity of Focused-Electron-Beam-Induced-Deposited Materials by Electron Tomography

Nanogranular material systems are promising for a variety of applications in research and development. Their physical properties are often determined based on the grain sizes, shapes, mutual distances, and chemistry of the embedding matrix. With focused-electron-beam-induced deposition, arbitrarily...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied nano materials 2019-09, Vol.2 (9), p.5356-5359
Hauptverfasser: Trummer, Cornelia, Winkler, Robert, Plank, Harald, Kothleitner, Gerald, Haberfehlner, Georg
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5359
container_issue 9
container_start_page 5356
container_title ACS applied nano materials
container_volume 2
creator Trummer, Cornelia
Winkler, Robert
Plank, Harald
Kothleitner, Gerald
Haberfehlner, Georg
description Nanogranular material systems are promising for a variety of applications in research and development. Their physical properties are often determined based on the grain sizes, shapes, mutual distances, and chemistry of the embedding matrix. With focused-electron-beam-induced deposition, arbitrarily shaped nanocomposite materials can be designed, where metallic, nanogranular structures are embedded in a carbonaceous matrix. By using “post-growth” electron-beam curing, these materials can be tuned for an improved electric-transport or mechanical behavior. Such an optimization necessitates a thorough understanding and characterization of the internal changes in chemistry and morphology, which is where conventional two-dimensional imaging techniques fall short. We use scanning transmission electron tomography to obtain a comprehensive picture of the three-dimensional distribution and morphology of embedded Pt nanograins after initial fabrication and demonstrate the impact of electron-beam curing, which results in condensed regions of interconnected metal nanograins.
doi_str_mv 10.1021/acsanm.9b01390
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsanm_9b01390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>f97881429</sourcerecordid><originalsourceid>FETCH-LOGICAL-a274t-b6e36e7ecf5fe939ad7d41d4e9890eb7da20e446e11f6ed43a9f7acf1c81cf583</originalsourceid><addsrcrecordid>eNp1kM9PwjAUxxujiQS5eu7ZZNhuZaVHRFAT1Auel7f2FUa2lrTbYf71joCJF0_v5fvr8CHknrMpZyl_BB3BNVNVMp4pdkVG6UyKhCnJrv_8t2QS44ExxhXPM8ZGpFo4qPvvyu1ou0f6Ac7vAriuhlC1PfWWrr3uIppkVaNug3fJE0KTvDnT6UF9xqOPVYuGvkOLoYI60rKnv2G69c1p8Ljv78iNHVycXO6YfK1X2-Vrsvl8eVsuNgmkUrRJmWOWo0RtZxZVpsBII7gRqOaKYSkNpAyFyJFzm6MRGSgrQVuu53zozLMxmZ53dfAxBrTFMVQNhL7grDixKs6sigurofBwLgx6cfBdGIjE_8I_FS1u1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Analyzing the Nanogranularity of Focused-Electron-Beam-Induced-Deposited Materials by Electron Tomography</title><source>American Chemical Society Journals</source><creator>Trummer, Cornelia ; Winkler, Robert ; Plank, Harald ; Kothleitner, Gerald ; Haberfehlner, Georg</creator><creatorcontrib>Trummer, Cornelia ; Winkler, Robert ; Plank, Harald ; Kothleitner, Gerald ; Haberfehlner, Georg</creatorcontrib><description>Nanogranular material systems are promising for a variety of applications in research and development. Their physical properties are often determined based on the grain sizes, shapes, mutual distances, and chemistry of the embedding matrix. With focused-electron-beam-induced deposition, arbitrarily shaped nanocomposite materials can be designed, where metallic, nanogranular structures are embedded in a carbonaceous matrix. By using “post-growth” electron-beam curing, these materials can be tuned for an improved electric-transport or mechanical behavior. Such an optimization necessitates a thorough understanding and characterization of the internal changes in chemistry and morphology, which is where conventional two-dimensional imaging techniques fall short. We use scanning transmission electron tomography to obtain a comprehensive picture of the three-dimensional distribution and morphology of embedded Pt nanograins after initial fabrication and demonstrate the impact of electron-beam curing, which results in condensed regions of interconnected metal nanograins.</description><identifier>ISSN: 2574-0970</identifier><identifier>EISSN: 2574-0970</identifier><identifier>DOI: 10.1021/acsanm.9b01390</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied nano materials, 2019-09, Vol.2 (9), p.5356-5359</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a274t-b6e36e7ecf5fe939ad7d41d4e9890eb7da20e446e11f6ed43a9f7acf1c81cf583</citedby><cites>FETCH-LOGICAL-a274t-b6e36e7ecf5fe939ad7d41d4e9890eb7da20e446e11f6ed43a9f7acf1c81cf583</cites><orcidid>0000-0001-6088-087X ; 0000-0003-4136-9384 ; 0000-0003-1112-0908</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsanm.9b01390$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsanm.9b01390$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Trummer, Cornelia</creatorcontrib><creatorcontrib>Winkler, Robert</creatorcontrib><creatorcontrib>Plank, Harald</creatorcontrib><creatorcontrib>Kothleitner, Gerald</creatorcontrib><creatorcontrib>Haberfehlner, Georg</creatorcontrib><title>Analyzing the Nanogranularity of Focused-Electron-Beam-Induced-Deposited Materials by Electron Tomography</title><title>ACS applied nano materials</title><addtitle>ACS Appl. Nano Mater</addtitle><description>Nanogranular material systems are promising for a variety of applications in research and development. Their physical properties are often determined based on the grain sizes, shapes, mutual distances, and chemistry of the embedding matrix. With focused-electron-beam-induced deposition, arbitrarily shaped nanocomposite materials can be designed, where metallic, nanogranular structures are embedded in a carbonaceous matrix. By using “post-growth” electron-beam curing, these materials can be tuned for an improved electric-transport or mechanical behavior. Such an optimization necessitates a thorough understanding and characterization of the internal changes in chemistry and morphology, which is where conventional two-dimensional imaging techniques fall short. We use scanning transmission electron tomography to obtain a comprehensive picture of the three-dimensional distribution and morphology of embedded Pt nanograins after initial fabrication and demonstrate the impact of electron-beam curing, which results in condensed regions of interconnected metal nanograins.</description><issn>2574-0970</issn><issn>2574-0970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM9PwjAUxxujiQS5eu7ZZNhuZaVHRFAT1Auel7f2FUa2lrTbYf71joCJF0_v5fvr8CHknrMpZyl_BB3BNVNVMp4pdkVG6UyKhCnJrv_8t2QS44ExxhXPM8ZGpFo4qPvvyu1ou0f6Ac7vAriuhlC1PfWWrr3uIppkVaNug3fJE0KTvDnT6UF9xqOPVYuGvkOLoYI60rKnv2G69c1p8Ljv78iNHVycXO6YfK1X2-Vrsvl8eVsuNgmkUrRJmWOWo0RtZxZVpsBII7gRqOaKYSkNpAyFyJFzm6MRGSgrQVuu53zozLMxmZ53dfAxBrTFMVQNhL7grDixKs6sigurofBwLgx6cfBdGIjE_8I_FS1u1A</recordid><startdate>20190927</startdate><enddate>20190927</enddate><creator>Trummer, Cornelia</creator><creator>Winkler, Robert</creator><creator>Plank, Harald</creator><creator>Kothleitner, Gerald</creator><creator>Haberfehlner, Georg</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6088-087X</orcidid><orcidid>https://orcid.org/0000-0003-4136-9384</orcidid><orcidid>https://orcid.org/0000-0003-1112-0908</orcidid></search><sort><creationdate>20190927</creationdate><title>Analyzing the Nanogranularity of Focused-Electron-Beam-Induced-Deposited Materials by Electron Tomography</title><author>Trummer, Cornelia ; Winkler, Robert ; Plank, Harald ; Kothleitner, Gerald ; Haberfehlner, Georg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a274t-b6e36e7ecf5fe939ad7d41d4e9890eb7da20e446e11f6ed43a9f7acf1c81cf583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trummer, Cornelia</creatorcontrib><creatorcontrib>Winkler, Robert</creatorcontrib><creatorcontrib>Plank, Harald</creatorcontrib><creatorcontrib>Kothleitner, Gerald</creatorcontrib><creatorcontrib>Haberfehlner, Georg</creatorcontrib><collection>CrossRef</collection><jtitle>ACS applied nano materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trummer, Cornelia</au><au>Winkler, Robert</au><au>Plank, Harald</au><au>Kothleitner, Gerald</au><au>Haberfehlner, Georg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analyzing the Nanogranularity of Focused-Electron-Beam-Induced-Deposited Materials by Electron Tomography</atitle><jtitle>ACS applied nano materials</jtitle><addtitle>ACS Appl. Nano Mater</addtitle><date>2019-09-27</date><risdate>2019</risdate><volume>2</volume><issue>9</issue><spage>5356</spage><epage>5359</epage><pages>5356-5359</pages><issn>2574-0970</issn><eissn>2574-0970</eissn><abstract>Nanogranular material systems are promising for a variety of applications in research and development. Their physical properties are often determined based on the grain sizes, shapes, mutual distances, and chemistry of the embedding matrix. With focused-electron-beam-induced deposition, arbitrarily shaped nanocomposite materials can be designed, where metallic, nanogranular structures are embedded in a carbonaceous matrix. By using “post-growth” electron-beam curing, these materials can be tuned for an improved electric-transport or mechanical behavior. Such an optimization necessitates a thorough understanding and characterization of the internal changes in chemistry and morphology, which is where conventional two-dimensional imaging techniques fall short. We use scanning transmission electron tomography to obtain a comprehensive picture of the three-dimensional distribution and morphology of embedded Pt nanograins after initial fabrication and demonstrate the impact of electron-beam curing, which results in condensed regions of interconnected metal nanograins.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsanm.9b01390</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-6088-087X</orcidid><orcidid>https://orcid.org/0000-0003-4136-9384</orcidid><orcidid>https://orcid.org/0000-0003-1112-0908</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2574-0970
ispartof ACS applied nano materials, 2019-09, Vol.2 (9), p.5356-5359
issn 2574-0970
2574-0970
language eng
recordid cdi_crossref_primary_10_1021_acsanm_9b01390
source American Chemical Society Journals
title Analyzing the Nanogranularity of Focused-Electron-Beam-Induced-Deposited Materials by Electron Tomography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A42%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analyzing%20the%20Nanogranularity%20of%20Focused-Electron-Beam-Induced-Deposited%20Materials%20by%20Electron%20Tomography&rft.jtitle=ACS%20applied%20nano%20materials&rft.au=Trummer,%20Cornelia&rft.date=2019-09-27&rft.volume=2&rft.issue=9&rft.spage=5356&rft.epage=5359&rft.pages=5356-5359&rft.issn=2574-0970&rft.eissn=2574-0970&rft_id=info:doi/10.1021/acsanm.9b01390&rft_dat=%3Cacs_cross%3Ef97881429%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true