Step-by-Step Assembled Enzyme–Polymer–Carbon Nanotubes for Solution-Processed Bioreactive Composites

Protein-conjugated single-walled carbon nanotubes (SWCNTs) have received much attention for their diverse applications in molecular biology. Intrinsically water-insoluble SWCNTs avoid conjugation with proteins, which leads to limited availability of biomolecule–nanocarbon composites. Because protein...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied nano materials 2019-07, Vol.2 (7), p.4323-4332
Hauptverfasser: Lin, Hsiu-Pen, Akimoto, Jun, Li, Yaw-Kuen, Ito, Yoshihiro, Kawamoto, Masuki
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4332
container_issue 7
container_start_page 4323
container_title ACS applied nano materials
container_volume 2
creator Lin, Hsiu-Pen
Akimoto, Jun
Li, Yaw-Kuen
Ito, Yoshihiro
Kawamoto, Masuki
description Protein-conjugated single-walled carbon nanotubes (SWCNTs) have received much attention for their diverse applications in molecular biology. Intrinsically water-insoluble SWCNTs avoid conjugation with proteins, which leads to limited availability of biomolecule–nanocarbon composites. Because protein functions are directly affected by assembled structures, the synthesis of heterogeneous composites with bioreactive responses is a great challenge. We demonstrate that step-by-step assembled enzyme/polymer/SWCNTs are obtained by using noncovalent-bonding methodologies in aqueous media. A multifunctional polymer containing aromatic, cationic, and redox-active units allows for a direct aqueous dispersion of SWCNTs through π interactions and a subsequent charge attraction to the enzyme, which yields the ternary composites. The resulting composites show bioreactive responses in enzyme-conjugated SWCNT networks. The solution-processed glucose oxidase (GOx)/polymer/SWCNT composite displays a high current density of 1420 μA cm–2 by enzymatic oxidation of glucose. Only 2.4 μg of GOx is shown to be necessary for the enzymatic reaction with a sensitivity of 72 μA mM–1 cm–2. This high sensitivity results from the assembled structure through noncovalent-bonding interactions. We demonstrate that the bioreactive composite allows energy conversion from a glucose-including beverage (cola) to electricity. Lactate oxidase-driven bioreactivity also takes place on the structurally organized composite. This step-by-step methodology would be beneficial for enzyme-assisted energy conversion nanocomposites.
doi_str_mv 10.1021/acsanm.9b00769
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsanm_9b00769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b52255459</sourcerecordid><originalsourceid>FETCH-LOGICAL-a274t-6a6fffe807988ff44932e3b2f9621cae2fb3183eed9d0b88042e027fa933873c3</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWGqvnvcspE6SdZMc61KtULRQPS_J7gS37G5KshXqyXfwDX0St7QHL57-j2G-YfgJuWYwZcDZrSmj6dqptgAy02dkxO9kSkFLOP_Dl2QS4wYAmGaZABiR93WPW2r39JDJLEZsbYNVMu8-9y3-fH2vfDNAGCg3wfoueTad73cWY-J8SNa-2fW17-gq-BIHvUruax_QlH39gUnu262PdY_xilw400ScnHJM3h7mr_mCLl8en_LZkhou055mJnPOoQKplXIuTbXgKCx3OuOsNMidFUwJxEpXYJWClCNw6YwWQklRijGZHu-WwccY0BXbULcm7AsGxaGq4lhVcapqEG6OwjAvNn4XuuG9_5Z_AT1db5Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Step-by-Step Assembled Enzyme–Polymer–Carbon Nanotubes for Solution-Processed Bioreactive Composites</title><source>ACS Publications</source><creator>Lin, Hsiu-Pen ; Akimoto, Jun ; Li, Yaw-Kuen ; Ito, Yoshihiro ; Kawamoto, Masuki</creator><creatorcontrib>Lin, Hsiu-Pen ; Akimoto, Jun ; Li, Yaw-Kuen ; Ito, Yoshihiro ; Kawamoto, Masuki</creatorcontrib><description>Protein-conjugated single-walled carbon nanotubes (SWCNTs) have received much attention for their diverse applications in molecular biology. Intrinsically water-insoluble SWCNTs avoid conjugation with proteins, which leads to limited availability of biomolecule–nanocarbon composites. Because protein functions are directly affected by assembled structures, the synthesis of heterogeneous composites with bioreactive responses is a great challenge. We demonstrate that step-by-step assembled enzyme/polymer/SWCNTs are obtained by using noncovalent-bonding methodologies in aqueous media. A multifunctional polymer containing aromatic, cationic, and redox-active units allows for a direct aqueous dispersion of SWCNTs through π interactions and a subsequent charge attraction to the enzyme, which yields the ternary composites. The resulting composites show bioreactive responses in enzyme-conjugated SWCNT networks. The solution-processed glucose oxidase (GOx)/polymer/SWCNT composite displays a high current density of 1420 μA cm–2 by enzymatic oxidation of glucose. Only 2.4 μg of GOx is shown to be necessary for the enzymatic reaction with a sensitivity of 72 μA mM–1 cm–2. This high sensitivity results from the assembled structure through noncovalent-bonding interactions. We demonstrate that the bioreactive composite allows energy conversion from a glucose-including beverage (cola) to electricity. Lactate oxidase-driven bioreactivity also takes place on the structurally organized composite. This step-by-step methodology would be beneficial for enzyme-assisted energy conversion nanocomposites.</description><identifier>ISSN: 2574-0970</identifier><identifier>EISSN: 2574-0970</identifier><identifier>DOI: 10.1021/acsanm.9b00769</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied nano materials, 2019-07, Vol.2 (7), p.4323-4332</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a274t-6a6fffe807988ff44932e3b2f9621cae2fb3183eed9d0b88042e027fa933873c3</citedby><cites>FETCH-LOGICAL-a274t-6a6fffe807988ff44932e3b2f9621cae2fb3183eed9d0b88042e027fa933873c3</cites><orcidid>0000-0002-1154-253X ; 0000-0003-3101-4416</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsanm.9b00769$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsanm.9b00769$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Lin, Hsiu-Pen</creatorcontrib><creatorcontrib>Akimoto, Jun</creatorcontrib><creatorcontrib>Li, Yaw-Kuen</creatorcontrib><creatorcontrib>Ito, Yoshihiro</creatorcontrib><creatorcontrib>Kawamoto, Masuki</creatorcontrib><title>Step-by-Step Assembled Enzyme–Polymer–Carbon Nanotubes for Solution-Processed Bioreactive Composites</title><title>ACS applied nano materials</title><addtitle>ACS Appl. Nano Mater</addtitle><description>Protein-conjugated single-walled carbon nanotubes (SWCNTs) have received much attention for their diverse applications in molecular biology. Intrinsically water-insoluble SWCNTs avoid conjugation with proteins, which leads to limited availability of biomolecule–nanocarbon composites. Because protein functions are directly affected by assembled structures, the synthesis of heterogeneous composites with bioreactive responses is a great challenge. We demonstrate that step-by-step assembled enzyme/polymer/SWCNTs are obtained by using noncovalent-bonding methodologies in aqueous media. A multifunctional polymer containing aromatic, cationic, and redox-active units allows for a direct aqueous dispersion of SWCNTs through π interactions and a subsequent charge attraction to the enzyme, which yields the ternary composites. The resulting composites show bioreactive responses in enzyme-conjugated SWCNT networks. The solution-processed glucose oxidase (GOx)/polymer/SWCNT composite displays a high current density of 1420 μA cm–2 by enzymatic oxidation of glucose. Only 2.4 μg of GOx is shown to be necessary for the enzymatic reaction with a sensitivity of 72 μA mM–1 cm–2. This high sensitivity results from the assembled structure through noncovalent-bonding interactions. We demonstrate that the bioreactive composite allows energy conversion from a glucose-including beverage (cola) to electricity. Lactate oxidase-driven bioreactivity also takes place on the structurally organized composite. This step-by-step methodology would be beneficial for enzyme-assisted energy conversion nanocomposites.</description><issn>2574-0970</issn><issn>2574-0970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEQhoMoWGqvnvcspE6SdZMc61KtULRQPS_J7gS37G5KshXqyXfwDX0St7QHL57-j2G-YfgJuWYwZcDZrSmj6dqptgAy02dkxO9kSkFLOP_Dl2QS4wYAmGaZABiR93WPW2r39JDJLEZsbYNVMu8-9y3-fH2vfDNAGCg3wfoueTad73cWY-J8SNa-2fW17-gq-BIHvUruax_QlH39gUnu262PdY_xilw400ScnHJM3h7mr_mCLl8en_LZkhou055mJnPOoQKplXIuTbXgKCx3OuOsNMidFUwJxEpXYJWClCNw6YwWQklRijGZHu-WwccY0BXbULcm7AsGxaGq4lhVcapqEG6OwjAvNn4XuuG9_5Z_AT1db5Y</recordid><startdate>20190726</startdate><enddate>20190726</enddate><creator>Lin, Hsiu-Pen</creator><creator>Akimoto, Jun</creator><creator>Li, Yaw-Kuen</creator><creator>Ito, Yoshihiro</creator><creator>Kawamoto, Masuki</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1154-253X</orcidid><orcidid>https://orcid.org/0000-0003-3101-4416</orcidid></search><sort><creationdate>20190726</creationdate><title>Step-by-Step Assembled Enzyme–Polymer–Carbon Nanotubes for Solution-Processed Bioreactive Composites</title><author>Lin, Hsiu-Pen ; Akimoto, Jun ; Li, Yaw-Kuen ; Ito, Yoshihiro ; Kawamoto, Masuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a274t-6a6fffe807988ff44932e3b2f9621cae2fb3183eed9d0b88042e027fa933873c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Hsiu-Pen</creatorcontrib><creatorcontrib>Akimoto, Jun</creatorcontrib><creatorcontrib>Li, Yaw-Kuen</creatorcontrib><creatorcontrib>Ito, Yoshihiro</creatorcontrib><creatorcontrib>Kawamoto, Masuki</creatorcontrib><collection>CrossRef</collection><jtitle>ACS applied nano materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Hsiu-Pen</au><au>Akimoto, Jun</au><au>Li, Yaw-Kuen</au><au>Ito, Yoshihiro</au><au>Kawamoto, Masuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Step-by-Step Assembled Enzyme–Polymer–Carbon Nanotubes for Solution-Processed Bioreactive Composites</atitle><jtitle>ACS applied nano materials</jtitle><addtitle>ACS Appl. Nano Mater</addtitle><date>2019-07-26</date><risdate>2019</risdate><volume>2</volume><issue>7</issue><spage>4323</spage><epage>4332</epage><pages>4323-4332</pages><issn>2574-0970</issn><eissn>2574-0970</eissn><abstract>Protein-conjugated single-walled carbon nanotubes (SWCNTs) have received much attention for their diverse applications in molecular biology. Intrinsically water-insoluble SWCNTs avoid conjugation with proteins, which leads to limited availability of biomolecule–nanocarbon composites. Because protein functions are directly affected by assembled structures, the synthesis of heterogeneous composites with bioreactive responses is a great challenge. We demonstrate that step-by-step assembled enzyme/polymer/SWCNTs are obtained by using noncovalent-bonding methodologies in aqueous media. A multifunctional polymer containing aromatic, cationic, and redox-active units allows for a direct aqueous dispersion of SWCNTs through π interactions and a subsequent charge attraction to the enzyme, which yields the ternary composites. The resulting composites show bioreactive responses in enzyme-conjugated SWCNT networks. The solution-processed glucose oxidase (GOx)/polymer/SWCNT composite displays a high current density of 1420 μA cm–2 by enzymatic oxidation of glucose. Only 2.4 μg of GOx is shown to be necessary for the enzymatic reaction with a sensitivity of 72 μA mM–1 cm–2. This high sensitivity results from the assembled structure through noncovalent-bonding interactions. We demonstrate that the bioreactive composite allows energy conversion from a glucose-including beverage (cola) to electricity. Lactate oxidase-driven bioreactivity also takes place on the structurally organized composite. This step-by-step methodology would be beneficial for enzyme-assisted energy conversion nanocomposites.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsanm.9b00769</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1154-253X</orcidid><orcidid>https://orcid.org/0000-0003-3101-4416</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2574-0970
ispartof ACS applied nano materials, 2019-07, Vol.2 (7), p.4323-4332
issn 2574-0970
2574-0970
language eng
recordid cdi_crossref_primary_10_1021_acsanm_9b00769
source ACS Publications
title Step-by-Step Assembled Enzyme–Polymer–Carbon Nanotubes for Solution-Processed Bioreactive Composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T13%3A31%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Step-by-Step%20Assembled%20Enzyme%E2%80%93Polymer%E2%80%93Carbon%20Nanotubes%20for%20Solution-Processed%20Bioreactive%20Composites&rft.jtitle=ACS%20applied%20nano%20materials&rft.au=Lin,%20Hsiu-Pen&rft.date=2019-07-26&rft.volume=2&rft.issue=7&rft.spage=4323&rft.epage=4332&rft.pages=4323-4332&rft.issn=2574-0970&rft.eissn=2574-0970&rft_id=info:doi/10.1021/acsanm.9b00769&rft_dat=%3Cacs_cross%3Eb52255459%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true