Onion-Derived Nanoparticles Ameliorate the Microenvironment To Revitalize Motor Function after Spinal Cord Injury

Spinal cord injury (SCI) inflicts terrifying consequences, which can cause permanent paralysis. During acute SCI, the damaged tissue undergoes pathological processes such as ischemia, hypoxia, and edema, simultaneously causing a significant accumulation of reactive oxygen species (ROS) in the injure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied nano materials 2024-10, Vol.7 (19), p.22694-22713
Hauptverfasser: Wang, Da-Ke, Guan, Li, Li, Dao-Yong, Zhao, Bao-Feng, Li, Zhi-Peng, Liu, Yu, Bai, Ming-Yu, Lu, Yuan-Jian, Shen, Zhao-Liang, Zhou, Zi-Peng, Zhang, Chuan-Jie, Mei, Xi-Fan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22713
container_issue 19
container_start_page 22694
container_title ACS applied nano materials
container_volume 7
creator Wang, Da-Ke
Guan, Li
Li, Dao-Yong
Zhao, Bao-Feng
Li, Zhi-Peng
Liu, Yu
Bai, Ming-Yu
Lu, Yuan-Jian
Shen, Zhao-Liang
Zhou, Zi-Peng
Zhang, Chuan-Jie
Mei, Xi-Fan
description Spinal cord injury (SCI) inflicts terrifying consequences, which can cause permanent paralysis. During acute SCI, the damaged tissue undergoes pathological processes such as ischemia, hypoxia, and edema, simultaneously causing a significant accumulation of reactive oxygen species (ROS) in the injured spinal cord. The continuous accumulation of ROS destroys cell integrity, promotes the secretion of proinflammatory factors, and further exacerbates edema and necrosis in the damaged spinal cord tissue, ultimately leading to neuronal apoptosis and failure of axon regeneration. Therefore, it is crucial to combat oxidative stress following SCI. In our study, we utilized environmentally friendly methods to extract Onion exosomes (Onion-ex), which inherit onions’ antioxidant, anti-inflammatory, and neuroprotective properties of onions. Surprisingly, we observed that Onion-ex had an unexpected positive impact on functional recovery following SCI. Furthermore, our findings indicate that the antioxidative stress mechanism of Onion-ex depends on the KEAP1/NRF2/ARE signaling pathway. Onion-ex’s remarkable therapeutic effects and biological safety provide valuable insights for clinical treatment involving plant-derived exosomes.
doi_str_mv 10.1021/acsanm.4c03645
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsanm_4c03645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a226164363</sourcerecordid><originalsourceid>FETCH-LOGICAL-a159t-9c19132812b259d0cfe47b900d07971f6090764d2e5698f642b119b2858fdb043</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWGqvnnMWtk6y2Y8cS7VaqBa0npdsNsGU3aQmaaH-9UbagxdPM8yb9_jxELolMCVAyb2QQdhhyiTkJSsu0IgWFcuAV3D5Z79GkxC2AEA4KXOAEfpaW-Ns9qC8OagOvwrrdsJHI3sV8GxQvXFeRIXjp8IvRnqn7MF4ZwdlI944_KYOJorefCfZRefxYm9lTJFY6Kg8ft8ZK3o8d77DS7vd--MNutKiD2pynmP0sXjczJ-z1fppOZ-tMkEKHjMuE2NOa0JbWvAOpFasajlABxWviC6BQ1Wyjqqi5LUuGW0J4S2ti1p3LbB8jKan3AQdgle62XkzCH9sCDS_nTWnzppzZ8lwdzKke7N1e5_Aw3_PP_Hyb2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Onion-Derived Nanoparticles Ameliorate the Microenvironment To Revitalize Motor Function after Spinal Cord Injury</title><source>ACS Publications</source><creator>Wang, Da-Ke ; Guan, Li ; Li, Dao-Yong ; Zhao, Bao-Feng ; Li, Zhi-Peng ; Liu, Yu ; Bai, Ming-Yu ; Lu, Yuan-Jian ; Shen, Zhao-Liang ; Zhou, Zi-Peng ; Zhang, Chuan-Jie ; Mei, Xi-Fan</creator><creatorcontrib>Wang, Da-Ke ; Guan, Li ; Li, Dao-Yong ; Zhao, Bao-Feng ; Li, Zhi-Peng ; Liu, Yu ; Bai, Ming-Yu ; Lu, Yuan-Jian ; Shen, Zhao-Liang ; Zhou, Zi-Peng ; Zhang, Chuan-Jie ; Mei, Xi-Fan</creatorcontrib><description>Spinal cord injury (SCI) inflicts terrifying consequences, which can cause permanent paralysis. During acute SCI, the damaged tissue undergoes pathological processes such as ischemia, hypoxia, and edema, simultaneously causing a significant accumulation of reactive oxygen species (ROS) in the injured spinal cord. The continuous accumulation of ROS destroys cell integrity, promotes the secretion of proinflammatory factors, and further exacerbates edema and necrosis in the damaged spinal cord tissue, ultimately leading to neuronal apoptosis and failure of axon regeneration. Therefore, it is crucial to combat oxidative stress following SCI. In our study, we utilized environmentally friendly methods to extract Onion exosomes (Onion-ex), which inherit onions’ antioxidant, anti-inflammatory, and neuroprotective properties of onions. Surprisingly, we observed that Onion-ex had an unexpected positive impact on functional recovery following SCI. Furthermore, our findings indicate that the antioxidative stress mechanism of Onion-ex depends on the KEAP1/NRF2/ARE signaling pathway. Onion-ex’s remarkable therapeutic effects and biological safety provide valuable insights for clinical treatment involving plant-derived exosomes.</description><identifier>ISSN: 2574-0970</identifier><identifier>EISSN: 2574-0970</identifier><identifier>DOI: 10.1021/acsanm.4c03645</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied nano materials, 2024-10, Vol.7 (19), p.22694-22713</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a159t-9c19132812b259d0cfe47b900d07971f6090764d2e5698f642b119b2858fdb043</cites><orcidid>0000-0003-3698-0525</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsanm.4c03645$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsanm.4c03645$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Wang, Da-Ke</creatorcontrib><creatorcontrib>Guan, Li</creatorcontrib><creatorcontrib>Li, Dao-Yong</creatorcontrib><creatorcontrib>Zhao, Bao-Feng</creatorcontrib><creatorcontrib>Li, Zhi-Peng</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><creatorcontrib>Bai, Ming-Yu</creatorcontrib><creatorcontrib>Lu, Yuan-Jian</creatorcontrib><creatorcontrib>Shen, Zhao-Liang</creatorcontrib><creatorcontrib>Zhou, Zi-Peng</creatorcontrib><creatorcontrib>Zhang, Chuan-Jie</creatorcontrib><creatorcontrib>Mei, Xi-Fan</creatorcontrib><title>Onion-Derived Nanoparticles Ameliorate the Microenvironment To Revitalize Motor Function after Spinal Cord Injury</title><title>ACS applied nano materials</title><addtitle>ACS Appl. Nano Mater</addtitle><description>Spinal cord injury (SCI) inflicts terrifying consequences, which can cause permanent paralysis. During acute SCI, the damaged tissue undergoes pathological processes such as ischemia, hypoxia, and edema, simultaneously causing a significant accumulation of reactive oxygen species (ROS) in the injured spinal cord. The continuous accumulation of ROS destroys cell integrity, promotes the secretion of proinflammatory factors, and further exacerbates edema and necrosis in the damaged spinal cord tissue, ultimately leading to neuronal apoptosis and failure of axon regeneration. Therefore, it is crucial to combat oxidative stress following SCI. In our study, we utilized environmentally friendly methods to extract Onion exosomes (Onion-ex), which inherit onions’ antioxidant, anti-inflammatory, and neuroprotective properties of onions. Surprisingly, we observed that Onion-ex had an unexpected positive impact on functional recovery following SCI. Furthermore, our findings indicate that the antioxidative stress mechanism of Onion-ex depends on the KEAP1/NRF2/ARE signaling pathway. Onion-ex’s remarkable therapeutic effects and biological safety provide valuable insights for clinical treatment involving plant-derived exosomes.</description><issn>2574-0970</issn><issn>2574-0970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEQxYMoWGqvnnMWtk6y2Y8cS7VaqBa0npdsNsGU3aQmaaH-9UbagxdPM8yb9_jxELolMCVAyb2QQdhhyiTkJSsu0IgWFcuAV3D5Z79GkxC2AEA4KXOAEfpaW-Ns9qC8OagOvwrrdsJHI3sV8GxQvXFeRIXjp8IvRnqn7MF4ZwdlI944_KYOJorefCfZRefxYm9lTJFY6Kg8ft8ZK3o8d77DS7vd--MNutKiD2pynmP0sXjczJ-z1fppOZ-tMkEKHjMuE2NOa0JbWvAOpFasajlABxWviC6BQ1Wyjqqi5LUuGW0J4S2ti1p3LbB8jKan3AQdgle62XkzCH9sCDS_nTWnzppzZ8lwdzKke7N1e5_Aw3_PP_Hyb2g</recordid><startdate>20241011</startdate><enddate>20241011</enddate><creator>Wang, Da-Ke</creator><creator>Guan, Li</creator><creator>Li, Dao-Yong</creator><creator>Zhao, Bao-Feng</creator><creator>Li, Zhi-Peng</creator><creator>Liu, Yu</creator><creator>Bai, Ming-Yu</creator><creator>Lu, Yuan-Jian</creator><creator>Shen, Zhao-Liang</creator><creator>Zhou, Zi-Peng</creator><creator>Zhang, Chuan-Jie</creator><creator>Mei, Xi-Fan</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3698-0525</orcidid></search><sort><creationdate>20241011</creationdate><title>Onion-Derived Nanoparticles Ameliorate the Microenvironment To Revitalize Motor Function after Spinal Cord Injury</title><author>Wang, Da-Ke ; Guan, Li ; Li, Dao-Yong ; Zhao, Bao-Feng ; Li, Zhi-Peng ; Liu, Yu ; Bai, Ming-Yu ; Lu, Yuan-Jian ; Shen, Zhao-Liang ; Zhou, Zi-Peng ; Zhang, Chuan-Jie ; Mei, Xi-Fan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a159t-9c19132812b259d0cfe47b900d07971f6090764d2e5698f642b119b2858fdb043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Da-Ke</creatorcontrib><creatorcontrib>Guan, Li</creatorcontrib><creatorcontrib>Li, Dao-Yong</creatorcontrib><creatorcontrib>Zhao, Bao-Feng</creatorcontrib><creatorcontrib>Li, Zhi-Peng</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><creatorcontrib>Bai, Ming-Yu</creatorcontrib><creatorcontrib>Lu, Yuan-Jian</creatorcontrib><creatorcontrib>Shen, Zhao-Liang</creatorcontrib><creatorcontrib>Zhou, Zi-Peng</creatorcontrib><creatorcontrib>Zhang, Chuan-Jie</creatorcontrib><creatorcontrib>Mei, Xi-Fan</creatorcontrib><collection>CrossRef</collection><jtitle>ACS applied nano materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Da-Ke</au><au>Guan, Li</au><au>Li, Dao-Yong</au><au>Zhao, Bao-Feng</au><au>Li, Zhi-Peng</au><au>Liu, Yu</au><au>Bai, Ming-Yu</au><au>Lu, Yuan-Jian</au><au>Shen, Zhao-Liang</au><au>Zhou, Zi-Peng</au><au>Zhang, Chuan-Jie</au><au>Mei, Xi-Fan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Onion-Derived Nanoparticles Ameliorate the Microenvironment To Revitalize Motor Function after Spinal Cord Injury</atitle><jtitle>ACS applied nano materials</jtitle><addtitle>ACS Appl. Nano Mater</addtitle><date>2024-10-11</date><risdate>2024</risdate><volume>7</volume><issue>19</issue><spage>22694</spage><epage>22713</epage><pages>22694-22713</pages><issn>2574-0970</issn><eissn>2574-0970</eissn><abstract>Spinal cord injury (SCI) inflicts terrifying consequences, which can cause permanent paralysis. During acute SCI, the damaged tissue undergoes pathological processes such as ischemia, hypoxia, and edema, simultaneously causing a significant accumulation of reactive oxygen species (ROS) in the injured spinal cord. The continuous accumulation of ROS destroys cell integrity, promotes the secretion of proinflammatory factors, and further exacerbates edema and necrosis in the damaged spinal cord tissue, ultimately leading to neuronal apoptosis and failure of axon regeneration. Therefore, it is crucial to combat oxidative stress following SCI. In our study, we utilized environmentally friendly methods to extract Onion exosomes (Onion-ex), which inherit onions’ antioxidant, anti-inflammatory, and neuroprotective properties of onions. Surprisingly, we observed that Onion-ex had an unexpected positive impact on functional recovery following SCI. Furthermore, our findings indicate that the antioxidative stress mechanism of Onion-ex depends on the KEAP1/NRF2/ARE signaling pathway. Onion-ex’s remarkable therapeutic effects and biological safety provide valuable insights for clinical treatment involving plant-derived exosomes.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsanm.4c03645</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-3698-0525</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2574-0970
ispartof ACS applied nano materials, 2024-10, Vol.7 (19), p.22694-22713
issn 2574-0970
2574-0970
language eng
recordid cdi_crossref_primary_10_1021_acsanm_4c03645
source ACS Publications
title Onion-Derived Nanoparticles Ameliorate the Microenvironment To Revitalize Motor Function after Spinal Cord Injury
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A20%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Onion-Derived%20Nanoparticles%20Ameliorate%20the%20Microenvironment%20To%20Revitalize%20Motor%20Function%20after%20Spinal%20Cord%20Injury&rft.jtitle=ACS%20applied%20nano%20materials&rft.au=Wang,%20Da-Ke&rft.date=2024-10-11&rft.volume=7&rft.issue=19&rft.spage=22694&rft.epage=22713&rft.pages=22694-22713&rft.issn=2574-0970&rft.eissn=2574-0970&rft_id=info:doi/10.1021/acsanm.4c03645&rft_dat=%3Cacs_cross%3Ea226164363%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true