Controlling the Energy Release Behavior of Aluminum Nanoparticles as Metal Fuels by Atomic Layer Deposited Copper Oxide Nanocoatings

Aluminum (Al) powder is widely employed in the aerospace and defense industries, particularly for its use in explosives and as a metal fuel. Enhancing the energy release performances of Al nanopowder is an important task. The surface properties of Al nanoparticles have a significant impact on their...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied nano materials 2024-10, Vol.7 (19), p.22592-22604
Hauptverfasser: Hu, Yiyun, Li, Dan, Qin, Lijun, Zhang, Wangle, Gong, Ting, Li, Jianguo, Feng, Hao
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22604
container_issue 19
container_start_page 22592
container_title ACS applied nano materials
container_volume 7
creator Hu, Yiyun
Li, Dan
Qin, Lijun
Zhang, Wangle
Gong, Ting
Li, Jianguo
Feng, Hao
description Aluminum (Al) powder is widely employed in the aerospace and defense industries, particularly for its use in explosives and as a metal fuel. Enhancing the energy release performances of Al nanopowder is an important task. The surface properties of Al nanoparticles have a significant impact on their energy release characteristics. In this work, atomic layer deposition (ALD) technology is utilized to grow nanometer-thin films of cuprous/cupric oxide (CuO x ) on the surface of Al nanopowder as an oxidizer to initiate redox reactions. Structural, morphological, and chemical properties of the Al@CuO x nanocomposites are characterized by various spectroscopic and microscopic techniques. The CuO x coating encapsulates the Al nanoparticles to form Al@CuO x core–shell nanocomposites, wherein the contact between Al and CuO x is significantly promoted; thus, the average fuel-oxidizer diffusion path is reduced. The thickness of the CuO x coating can be conveniently changed with nanometer-scale precision by varying the ALD cycle number, which enables flexible control over the structure of the nanocomposites. Oxidation, ignition, and combustion behaviors of Al@CuO x nanocomposites are investigated by differential scanning calorimetry and laser ignition experiments. Only a few nanometers of the CuO x surface modification layer can effectively enhance the energy release performances of Al powder, which is manifested specifically by significantly reduced ignition delay time, oxidation temperature, and remarkably increased reaction rate.
doi_str_mv 10.1021/acsanm.4c03407
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsanm_4c03407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b538238165</sourcerecordid><originalsourceid>FETCH-LOGICAL-a159t-6df6f564ee30b47d8ec1411d87d7207229b15d131cccc05e613756d4789adc083</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EElXpyuwZKeWcLydjCS0gFSohmCPXvrSunDiyE0R2_nAC7cDCLXd6uvfu9CPkmsGcQchuhfSiqeexhCgGfkYmYcLjAHIO53_mSzLz_gAALGdpBDAhX4VtOmeN0c2OdnukywbdbqCvaFB4pHe4Fx_aOmorujB9rZu-pi-isa1wnZYGPRWePmMnDF31aDzdDnTR2VpLuhYDOnqPrfW6Q0UL27ajsPnUCn8zpBXdeNdfkYtKGI-zU5-S99XyrXgM1puHp2KxDgRL8i5IVZVWSRojRrCNucpQspgxlXHFQ-BhmG9ZoljE5FiQYMoinqQq5lkulIQsmpL5MVc6673DqmydroUbSgblD8byiLE8YRwNN0fDqJcH27tmfO-_5W9jEXZ5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Controlling the Energy Release Behavior of Aluminum Nanoparticles as Metal Fuels by Atomic Layer Deposited Copper Oxide Nanocoatings</title><source>ACS Publications</source><creator>Hu, Yiyun ; Li, Dan ; Qin, Lijun ; Zhang, Wangle ; Gong, Ting ; Li, Jianguo ; Feng, Hao</creator><creatorcontrib>Hu, Yiyun ; Li, Dan ; Qin, Lijun ; Zhang, Wangle ; Gong, Ting ; Li, Jianguo ; Feng, Hao</creatorcontrib><description>Aluminum (Al) powder is widely employed in the aerospace and defense industries, particularly for its use in explosives and as a metal fuel. Enhancing the energy release performances of Al nanopowder is an important task. The surface properties of Al nanoparticles have a significant impact on their energy release characteristics. In this work, atomic layer deposition (ALD) technology is utilized to grow nanometer-thin films of cuprous/cupric oxide (CuO x ) on the surface of Al nanopowder as an oxidizer to initiate redox reactions. Structural, morphological, and chemical properties of the Al@CuO x nanocomposites are characterized by various spectroscopic and microscopic techniques. The CuO x coating encapsulates the Al nanoparticles to form Al@CuO x core–shell nanocomposites, wherein the contact between Al and CuO x is significantly promoted; thus, the average fuel-oxidizer diffusion path is reduced. The thickness of the CuO x coating can be conveniently changed with nanometer-scale precision by varying the ALD cycle number, which enables flexible control over the structure of the nanocomposites. Oxidation, ignition, and combustion behaviors of Al@CuO x nanocomposites are investigated by differential scanning calorimetry and laser ignition experiments. Only a few nanometers of the CuO x surface modification layer can effectively enhance the energy release performances of Al powder, which is manifested specifically by significantly reduced ignition delay time, oxidation temperature, and remarkably increased reaction rate.</description><identifier>ISSN: 2574-0970</identifier><identifier>EISSN: 2574-0970</identifier><identifier>DOI: 10.1021/acsanm.4c03407</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied nano materials, 2024-10, Vol.7 (19), p.22592-22604</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a159t-6df6f564ee30b47d8ec1411d87d7207229b15d131cccc05e613756d4789adc083</cites><orcidid>0000-0001-5666-5552</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsanm.4c03407$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsanm.4c03407$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids></links><search><creatorcontrib>Hu, Yiyun</creatorcontrib><creatorcontrib>Li, Dan</creatorcontrib><creatorcontrib>Qin, Lijun</creatorcontrib><creatorcontrib>Zhang, Wangle</creatorcontrib><creatorcontrib>Gong, Ting</creatorcontrib><creatorcontrib>Li, Jianguo</creatorcontrib><creatorcontrib>Feng, Hao</creatorcontrib><title>Controlling the Energy Release Behavior of Aluminum Nanoparticles as Metal Fuels by Atomic Layer Deposited Copper Oxide Nanocoatings</title><title>ACS applied nano materials</title><addtitle>ACS Appl. Nano Mater</addtitle><description>Aluminum (Al) powder is widely employed in the aerospace and defense industries, particularly for its use in explosives and as a metal fuel. Enhancing the energy release performances of Al nanopowder is an important task. The surface properties of Al nanoparticles have a significant impact on their energy release characteristics. In this work, atomic layer deposition (ALD) technology is utilized to grow nanometer-thin films of cuprous/cupric oxide (CuO x ) on the surface of Al nanopowder as an oxidizer to initiate redox reactions. Structural, morphological, and chemical properties of the Al@CuO x nanocomposites are characterized by various spectroscopic and microscopic techniques. The CuO x coating encapsulates the Al nanoparticles to form Al@CuO x core–shell nanocomposites, wherein the contact between Al and CuO x is significantly promoted; thus, the average fuel-oxidizer diffusion path is reduced. The thickness of the CuO x coating can be conveniently changed with nanometer-scale precision by varying the ALD cycle number, which enables flexible control over the structure of the nanocomposites. Oxidation, ignition, and combustion behaviors of Al@CuO x nanocomposites are investigated by differential scanning calorimetry and laser ignition experiments. Only a few nanometers of the CuO x surface modification layer can effectively enhance the energy release performances of Al powder, which is manifested specifically by significantly reduced ignition delay time, oxidation temperature, and remarkably increased reaction rate.</description><issn>2574-0970</issn><issn>2574-0970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAQxS0EElXpyuwZKeWcLydjCS0gFSohmCPXvrSunDiyE0R2_nAC7cDCLXd6uvfu9CPkmsGcQchuhfSiqeexhCgGfkYmYcLjAHIO53_mSzLz_gAALGdpBDAhX4VtOmeN0c2OdnukywbdbqCvaFB4pHe4Fx_aOmorujB9rZu-pi-isa1wnZYGPRWePmMnDF31aDzdDnTR2VpLuhYDOnqPrfW6Q0UL27ajsPnUCn8zpBXdeNdfkYtKGI-zU5-S99XyrXgM1puHp2KxDgRL8i5IVZVWSRojRrCNucpQspgxlXHFQ-BhmG9ZoljE5FiQYMoinqQq5lkulIQsmpL5MVc6673DqmydroUbSgblD8byiLE8YRwNN0fDqJcH27tmfO-_5W9jEXZ5</recordid><startdate>20241011</startdate><enddate>20241011</enddate><creator>Hu, Yiyun</creator><creator>Li, Dan</creator><creator>Qin, Lijun</creator><creator>Zhang, Wangle</creator><creator>Gong, Ting</creator><creator>Li, Jianguo</creator><creator>Feng, Hao</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5666-5552</orcidid></search><sort><creationdate>20241011</creationdate><title>Controlling the Energy Release Behavior of Aluminum Nanoparticles as Metal Fuels by Atomic Layer Deposited Copper Oxide Nanocoatings</title><author>Hu, Yiyun ; Li, Dan ; Qin, Lijun ; Zhang, Wangle ; Gong, Ting ; Li, Jianguo ; Feng, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a159t-6df6f564ee30b47d8ec1411d87d7207229b15d131cccc05e613756d4789adc083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Yiyun</creatorcontrib><creatorcontrib>Li, Dan</creatorcontrib><creatorcontrib>Qin, Lijun</creatorcontrib><creatorcontrib>Zhang, Wangle</creatorcontrib><creatorcontrib>Gong, Ting</creatorcontrib><creatorcontrib>Li, Jianguo</creatorcontrib><creatorcontrib>Feng, Hao</creatorcontrib><collection>CrossRef</collection><jtitle>ACS applied nano materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Yiyun</au><au>Li, Dan</au><au>Qin, Lijun</au><au>Zhang, Wangle</au><au>Gong, Ting</au><au>Li, Jianguo</au><au>Feng, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling the Energy Release Behavior of Aluminum Nanoparticles as Metal Fuels by Atomic Layer Deposited Copper Oxide Nanocoatings</atitle><jtitle>ACS applied nano materials</jtitle><addtitle>ACS Appl. Nano Mater</addtitle><date>2024-10-11</date><risdate>2024</risdate><volume>7</volume><issue>19</issue><spage>22592</spage><epage>22604</epage><pages>22592-22604</pages><issn>2574-0970</issn><eissn>2574-0970</eissn><abstract>Aluminum (Al) powder is widely employed in the aerospace and defense industries, particularly for its use in explosives and as a metal fuel. Enhancing the energy release performances of Al nanopowder is an important task. The surface properties of Al nanoparticles have a significant impact on their energy release characteristics. In this work, atomic layer deposition (ALD) technology is utilized to grow nanometer-thin films of cuprous/cupric oxide (CuO x ) on the surface of Al nanopowder as an oxidizer to initiate redox reactions. Structural, morphological, and chemical properties of the Al@CuO x nanocomposites are characterized by various spectroscopic and microscopic techniques. The CuO x coating encapsulates the Al nanoparticles to form Al@CuO x core–shell nanocomposites, wherein the contact between Al and CuO x is significantly promoted; thus, the average fuel-oxidizer diffusion path is reduced. The thickness of the CuO x coating can be conveniently changed with nanometer-scale precision by varying the ALD cycle number, which enables flexible control over the structure of the nanocomposites. Oxidation, ignition, and combustion behaviors of Al@CuO x nanocomposites are investigated by differential scanning calorimetry and laser ignition experiments. Only a few nanometers of the CuO x surface modification layer can effectively enhance the energy release performances of Al powder, which is manifested specifically by significantly reduced ignition delay time, oxidation temperature, and remarkably increased reaction rate.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsanm.4c03407</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5666-5552</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2574-0970
ispartof ACS applied nano materials, 2024-10, Vol.7 (19), p.22592-22604
issn 2574-0970
2574-0970
language eng
recordid cdi_crossref_primary_10_1021_acsanm_4c03407
source ACS Publications
title Controlling the Energy Release Behavior of Aluminum Nanoparticles as Metal Fuels by Atomic Layer Deposited Copper Oxide Nanocoatings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T08%3A33%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20the%20Energy%20Release%20Behavior%20of%20Aluminum%20Nanoparticles%20as%20Metal%20Fuels%20by%20Atomic%20Layer%20Deposited%20Copper%20Oxide%20Nanocoatings&rft.jtitle=ACS%20applied%20nano%20materials&rft.au=Hu,%20Yiyun&rft.date=2024-10-11&rft.volume=7&rft.issue=19&rft.spage=22592&rft.epage=22604&rft.pages=22592-22604&rft.issn=2574-0970&rft.eissn=2574-0970&rft_id=info:doi/10.1021/acsanm.4c03407&rft_dat=%3Cacs_cross%3Eb538238165%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true