Molecular Dynamics Investigation of the Toughening Mechanism in Core–Shell Nanoporous Gold Modified by Pt Layers: Implications for Sensing Applications

Nanoporous metals demonstrate significant potential in a variety of innovative structures and functional domains, but their limited macroscopic plasticity hinders their industrial application. In this work, we constructed a core–shell structure by modifying nanoporous gold (NP-Au) with Pt atoms and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied nano materials 2024-08, Vol.7 (16), p.18995-19005
Hauptverfasser: Li, Jie, Dai, Lehui, Li, Jiejie
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19005
container_issue 16
container_start_page 18995
container_title ACS applied nano materials
container_volume 7
creator Li, Jie
Dai, Lehui
Li, Jiejie
description Nanoporous metals demonstrate significant potential in a variety of innovative structures and functional domains, but their limited macroscopic plasticity hinders their industrial application. In this work, we constructed a core–shell structure by modifying nanoporous gold (NP-Au) with Pt atoms and investigated its mechanical response via molecular dynamics simulations. The results showed that the introduction of the Pt shell layer to form a core–shell structure effectively enhances the plasticity of NP-Au. Specifically, the lattice mismatch between the Pt shell layer and Au core layer induces elevated interfacial stress, leading to heightened initial dislocation density and intensified dislocation activity during deformation, which promotes the formation of Lomer–Cottrell locks and helps resist fracture. Additionally, the Pt shell layer mitigates strain localization and facilitates the nucleation and propagation of nanotwins. These synergistic mechanisms collectively contribute to the observed enhancement in plasticity, with greater reinforcement observed as the thickness of the Pt coating layer increases. Through quantitative comparative analysis between decorated specimens with equivalent relative density to NP-Au, it can be concluded that the strength and modulus augmentation in coated NP-Au@Pt might primarily stem from an increase in relative density rather than the special core–shell structure. Our findings clarify the toughening mechanism of the core–shell nanoporous structure, which provides a structural design strategy of ductile nanoporous materials for sensing applications.
doi_str_mv 10.1021/acsanm.4c02867
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsanm_4c02867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>i49698001</sourcerecordid><originalsourceid>FETCH-LOGICAL-a159t-fa5c6f7d91e13cad3d1811bb37fdbe0ab104148cee6d8bdd3afc89bd085d81cb3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsGivnucspO42395K1VpoVWg9h_1stiS7YTcRcvM_ePLv-UtsbUEvnmaYmfdheBC6InhE8JjcUO6pqUcRx-MsSU_QYBynUYDzFJ_-6c_R0PstxpjkJAkxHqDPpa0k7yrq4K43tNbcw9y8Sd_qDW21NWAVtKWEte02pTTabGApeUmN9jVoA1Pr5Nf7x6qUVQVP1NjGOtt5mNlKwNIKrbQUwHp4aWFBe-n8LczrptL8B-9BWQcrafyePGl-F5foTNHKy-GxXqDXh_v19DFYPM_m08kioCTO20DRmCcqFTmRJORUhIJkhDAWpkowiSkjOCJRxqVMRMaECKniWc4EzmKREc7CCzQ6cLmz3jupisbpmrq-ILjYuy0Obouj213g-hDYzYut7ZzZvfff8Tdf4IGx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Molecular Dynamics Investigation of the Toughening Mechanism in Core–Shell Nanoporous Gold Modified by Pt Layers: Implications for Sensing Applications</title><source>American Chemical Society Journals</source><creator>Li, Jie ; Dai, Lehui ; Li, Jiejie</creator><creatorcontrib>Li, Jie ; Dai, Lehui ; Li, Jiejie</creatorcontrib><description>Nanoporous metals demonstrate significant potential in a variety of innovative structures and functional domains, but their limited macroscopic plasticity hinders their industrial application. In this work, we constructed a core–shell structure by modifying nanoporous gold (NP-Au) with Pt atoms and investigated its mechanical response via molecular dynamics simulations. The results showed that the introduction of the Pt shell layer to form a core–shell structure effectively enhances the plasticity of NP-Au. Specifically, the lattice mismatch between the Pt shell layer and Au core layer induces elevated interfacial stress, leading to heightened initial dislocation density and intensified dislocation activity during deformation, which promotes the formation of Lomer–Cottrell locks and helps resist fracture. Additionally, the Pt shell layer mitigates strain localization and facilitates the nucleation and propagation of nanotwins. These synergistic mechanisms collectively contribute to the observed enhancement in plasticity, with greater reinforcement observed as the thickness of the Pt coating layer increases. Through quantitative comparative analysis between decorated specimens with equivalent relative density to NP-Au, it can be concluded that the strength and modulus augmentation in coated NP-Au@Pt might primarily stem from an increase in relative density rather than the special core–shell structure. Our findings clarify the toughening mechanism of the core–shell nanoporous structure, which provides a structural design strategy of ductile nanoporous materials for sensing applications.</description><identifier>ISSN: 2574-0970</identifier><identifier>EISSN: 2574-0970</identifier><identifier>DOI: 10.1021/acsanm.4c02867</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied nano materials, 2024-08, Vol.7 (16), p.18995-19005</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a159t-fa5c6f7d91e13cad3d1811bb37fdbe0ab104148cee6d8bdd3afc89bd085d81cb3</cites><orcidid>0000-0002-5533-0512</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsanm.4c02867$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsanm.4c02867$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids></links><search><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Dai, Lehui</creatorcontrib><creatorcontrib>Li, Jiejie</creatorcontrib><title>Molecular Dynamics Investigation of the Toughening Mechanism in Core–Shell Nanoporous Gold Modified by Pt Layers: Implications for Sensing Applications</title><title>ACS applied nano materials</title><addtitle>ACS Appl. Nano Mater</addtitle><description>Nanoporous metals demonstrate significant potential in a variety of innovative structures and functional domains, but their limited macroscopic plasticity hinders their industrial application. In this work, we constructed a core–shell structure by modifying nanoporous gold (NP-Au) with Pt atoms and investigated its mechanical response via molecular dynamics simulations. The results showed that the introduction of the Pt shell layer to form a core–shell structure effectively enhances the plasticity of NP-Au. Specifically, the lattice mismatch between the Pt shell layer and Au core layer induces elevated interfacial stress, leading to heightened initial dislocation density and intensified dislocation activity during deformation, which promotes the formation of Lomer–Cottrell locks and helps resist fracture. Additionally, the Pt shell layer mitigates strain localization and facilitates the nucleation and propagation of nanotwins. These synergistic mechanisms collectively contribute to the observed enhancement in plasticity, with greater reinforcement observed as the thickness of the Pt coating layer increases. Through quantitative comparative analysis between decorated specimens with equivalent relative density to NP-Au, it can be concluded that the strength and modulus augmentation in coated NP-Au@Pt might primarily stem from an increase in relative density rather than the special core–shell structure. Our findings clarify the toughening mechanism of the core–shell nanoporous structure, which provides a structural design strategy of ductile nanoporous materials for sensing applications.</description><issn>2574-0970</issn><issn>2574-0970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRsGivnucspO42395K1VpoVWg9h_1stiS7YTcRcvM_ePLv-UtsbUEvnmaYmfdheBC6InhE8JjcUO6pqUcRx-MsSU_QYBynUYDzFJ_-6c_R0PstxpjkJAkxHqDPpa0k7yrq4K43tNbcw9y8Sd_qDW21NWAVtKWEte02pTTabGApeUmN9jVoA1Pr5Nf7x6qUVQVP1NjGOtt5mNlKwNIKrbQUwHp4aWFBe-n8LczrptL8B-9BWQcrafyePGl-F5foTNHKy-GxXqDXh_v19DFYPM_m08kioCTO20DRmCcqFTmRJORUhIJkhDAWpkowiSkjOCJRxqVMRMaECKniWc4EzmKREc7CCzQ6cLmz3jupisbpmrq-ILjYuy0Obouj213g-hDYzYut7ZzZvfff8Tdf4IGx</recordid><startdate>20240823</startdate><enddate>20240823</enddate><creator>Li, Jie</creator><creator>Dai, Lehui</creator><creator>Li, Jiejie</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5533-0512</orcidid></search><sort><creationdate>20240823</creationdate><title>Molecular Dynamics Investigation of the Toughening Mechanism in Core–Shell Nanoporous Gold Modified by Pt Layers: Implications for Sensing Applications</title><author>Li, Jie ; Dai, Lehui ; Li, Jiejie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a159t-fa5c6f7d91e13cad3d1811bb37fdbe0ab104148cee6d8bdd3afc89bd085d81cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Dai, Lehui</creatorcontrib><creatorcontrib>Li, Jiejie</creatorcontrib><collection>CrossRef</collection><jtitle>ACS applied nano materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jie</au><au>Dai, Lehui</au><au>Li, Jiejie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Dynamics Investigation of the Toughening Mechanism in Core–Shell Nanoporous Gold Modified by Pt Layers: Implications for Sensing Applications</atitle><jtitle>ACS applied nano materials</jtitle><addtitle>ACS Appl. Nano Mater</addtitle><date>2024-08-23</date><risdate>2024</risdate><volume>7</volume><issue>16</issue><spage>18995</spage><epage>19005</epage><pages>18995-19005</pages><issn>2574-0970</issn><eissn>2574-0970</eissn><abstract>Nanoporous metals demonstrate significant potential in a variety of innovative structures and functional domains, but their limited macroscopic plasticity hinders their industrial application. In this work, we constructed a core–shell structure by modifying nanoporous gold (NP-Au) with Pt atoms and investigated its mechanical response via molecular dynamics simulations. The results showed that the introduction of the Pt shell layer to form a core–shell structure effectively enhances the plasticity of NP-Au. Specifically, the lattice mismatch between the Pt shell layer and Au core layer induces elevated interfacial stress, leading to heightened initial dislocation density and intensified dislocation activity during deformation, which promotes the formation of Lomer–Cottrell locks and helps resist fracture. Additionally, the Pt shell layer mitigates strain localization and facilitates the nucleation and propagation of nanotwins. These synergistic mechanisms collectively contribute to the observed enhancement in plasticity, with greater reinforcement observed as the thickness of the Pt coating layer increases. Through quantitative comparative analysis between decorated specimens with equivalent relative density to NP-Au, it can be concluded that the strength and modulus augmentation in coated NP-Au@Pt might primarily stem from an increase in relative density rather than the special core–shell structure. Our findings clarify the toughening mechanism of the core–shell nanoporous structure, which provides a structural design strategy of ductile nanoporous materials for sensing applications.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsanm.4c02867</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5533-0512</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2574-0970
ispartof ACS applied nano materials, 2024-08, Vol.7 (16), p.18995-19005
issn 2574-0970
2574-0970
language eng
recordid cdi_crossref_primary_10_1021_acsanm_4c02867
source American Chemical Society Journals
title Molecular Dynamics Investigation of the Toughening Mechanism in Core–Shell Nanoporous Gold Modified by Pt Layers: Implications for Sensing Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A51%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Dynamics%20Investigation%20of%20the%20Toughening%20Mechanism%20in%20Core%E2%80%93Shell%20Nanoporous%20Gold%20Modified%20by%20Pt%20Layers:%20Implications%20for%20Sensing%20Applications&rft.jtitle=ACS%20applied%20nano%20materials&rft.au=Li,%20Jie&rft.date=2024-08-23&rft.volume=7&rft.issue=16&rft.spage=18995&rft.epage=19005&rft.pages=18995-19005&rft.issn=2574-0970&rft.eissn=2574-0970&rft_id=info:doi/10.1021/acsanm.4c02867&rft_dat=%3Cacs_cross%3Ei49698001%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true