Boron Regulated Fe Single-Atom Structures for Electrocatalytic Nitrate Reduction to Ammonia

Electrocatalytic reduction of nitrate (NO3RR) to ammonia offers a promising approach for mitigating the environmental impact of NO3 –, while simultaneously enabling the synthesis of NH3 under ambient conditions. Recently, single-atom catalysts (SACs) have been proven to have attractive activity on N...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied nano materials 2024-06, Vol.7 (12), p.14654-14664
Hauptverfasser: Lu, Xihui, Wei, Jinshan, Lin, Hexing, Li, Yi, Li, Ya-yun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14664
container_issue 12
container_start_page 14654
container_title ACS applied nano materials
container_volume 7
creator Lu, Xihui
Wei, Jinshan
Lin, Hexing
Li, Yi
Li, Ya-yun
description Electrocatalytic reduction of nitrate (NO3RR) to ammonia offers a promising approach for mitigating the environmental impact of NO3 –, while simultaneously enabling the synthesis of NH3 under ambient conditions. Recently, single-atom catalysts (SACs) have been proven to have attractive activity on NO3RR, and better catalysts with enhanced activity and stability are still in demand. Here, we report the efficient boosting of NH3 production via the NO3RR using boron-doped Fe SAC (Fe-BCN). Fe-BCN is a normal 12-hedral nanoparticle with a size of 500 nm. The NH3 Faradaic efficiency of Fe-BCN reached 97.48%, with a high ammonia production rate of 2.17 mg cm–2 h–1, in an alkaline electrolyte environment at an electrode potential of −0.3 V vs reversible hydrogen electrode. Density functional theory calculations revealed the strategy of introduced B regulating the intermediate adsorption on Fe-BCN, which enhanced the NO3RR activity. Furthermore, leveraging the high NO3RR activity of Fe-BCN, a nitrate-zinc battery with a power density of 0.90 mW cm–2 was constructed by using Fe-BCN as the cathode and zinc as the anode, respectively. This research demonstrates the broad prospects of Fe-BCN in the NO3RR and provides insights for high-performance Fe SAC electrode materials.
doi_str_mv 10.1021/acsanm.4c02221
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsanm_4c02221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>f16504996</sourcerecordid><originalsourceid>FETCH-LOGICAL-a229t-70b9f51cf1fb75b1a888b161dec0d950efcc97a6e4be680f1d2709a77b44573e3</originalsourceid><addsrcrecordid>eNp1kMFLwzAUh4MoOOaunnMWWl-ytmmOdWxOGApOTx5Kmr6MjraRJD3svzeyHbx4eo_H7_vx-Ai5Z5Ay4OxRaa_GIc00cM7ZFZnxXGQJSAHXf_ZbsvD-CABMsmIJMCNfT9bZkb7jYepVwJZukO678dBjUgU70H1wkw6TQ0-NdXTdow7OahVUfwqdpq9dcJGLBW3MdbEqWFoNgx07dUdujOo9Li5zTj4364_VNtm9Pb-sql2iOJchEdBIkzNtmGlE3jBVlmXDCtaihlbmgEZrKVSBWYNFCYa1XIBUQjRZloslLuckPfdqZ713aOpv1w3KnWoG9a-d-mynvtiJwMMZiPf6aCc3xvf-C_8AdF5oUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Boron Regulated Fe Single-Atom Structures for Electrocatalytic Nitrate Reduction to Ammonia</title><source>ACS Publications</source><creator>Lu, Xihui ; Wei, Jinshan ; Lin, Hexing ; Li, Yi ; Li, Ya-yun</creator><creatorcontrib>Lu, Xihui ; Wei, Jinshan ; Lin, Hexing ; Li, Yi ; Li, Ya-yun</creatorcontrib><description>Electrocatalytic reduction of nitrate (NO3RR) to ammonia offers a promising approach for mitigating the environmental impact of NO3 –, while simultaneously enabling the synthesis of NH3 under ambient conditions. Recently, single-atom catalysts (SACs) have been proven to have attractive activity on NO3RR, and better catalysts with enhanced activity and stability are still in demand. Here, we report the efficient boosting of NH3 production via the NO3RR using boron-doped Fe SAC (Fe-BCN). Fe-BCN is a normal 12-hedral nanoparticle with a size of 500 nm. The NH3 Faradaic efficiency of Fe-BCN reached 97.48%, with a high ammonia production rate of 2.17 mg cm–2 h–1, in an alkaline electrolyte environment at an electrode potential of −0.3 V vs reversible hydrogen electrode. Density functional theory calculations revealed the strategy of introduced B regulating the intermediate adsorption on Fe-BCN, which enhanced the NO3RR activity. Furthermore, leveraging the high NO3RR activity of Fe-BCN, a nitrate-zinc battery with a power density of 0.90 mW cm–2 was constructed by using Fe-BCN as the cathode and zinc as the anode, respectively. This research demonstrates the broad prospects of Fe-BCN in the NO3RR and provides insights for high-performance Fe SAC electrode materials.</description><identifier>ISSN: 2574-0970</identifier><identifier>EISSN: 2574-0970</identifier><identifier>DOI: 10.1021/acsanm.4c02221</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied nano materials, 2024-06, Vol.7 (12), p.14654-14664</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a229t-70b9f51cf1fb75b1a888b161dec0d950efcc97a6e4be680f1d2709a77b44573e3</cites><orcidid>0000-0002-1696-5507</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsanm.4c02221$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsanm.4c02221$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Lu, Xihui</creatorcontrib><creatorcontrib>Wei, Jinshan</creatorcontrib><creatorcontrib>Lin, Hexing</creatorcontrib><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Li, Ya-yun</creatorcontrib><title>Boron Regulated Fe Single-Atom Structures for Electrocatalytic Nitrate Reduction to Ammonia</title><title>ACS applied nano materials</title><addtitle>ACS Appl. Nano Mater</addtitle><description>Electrocatalytic reduction of nitrate (NO3RR) to ammonia offers a promising approach for mitigating the environmental impact of NO3 –, while simultaneously enabling the synthesis of NH3 under ambient conditions. Recently, single-atom catalysts (SACs) have been proven to have attractive activity on NO3RR, and better catalysts with enhanced activity and stability are still in demand. Here, we report the efficient boosting of NH3 production via the NO3RR using boron-doped Fe SAC (Fe-BCN). Fe-BCN is a normal 12-hedral nanoparticle with a size of 500 nm. The NH3 Faradaic efficiency of Fe-BCN reached 97.48%, with a high ammonia production rate of 2.17 mg cm–2 h–1, in an alkaline electrolyte environment at an electrode potential of −0.3 V vs reversible hydrogen electrode. Density functional theory calculations revealed the strategy of introduced B regulating the intermediate adsorption on Fe-BCN, which enhanced the NO3RR activity. Furthermore, leveraging the high NO3RR activity of Fe-BCN, a nitrate-zinc battery with a power density of 0.90 mW cm–2 was constructed by using Fe-BCN as the cathode and zinc as the anode, respectively. This research demonstrates the broad prospects of Fe-BCN in the NO3RR and provides insights for high-performance Fe SAC electrode materials.</description><issn>2574-0970</issn><issn>2574-0970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kMFLwzAUh4MoOOaunnMWWl-ytmmOdWxOGApOTx5Kmr6MjraRJD3svzeyHbx4eo_H7_vx-Ai5Z5Ay4OxRaa_GIc00cM7ZFZnxXGQJSAHXf_ZbsvD-CABMsmIJMCNfT9bZkb7jYepVwJZukO678dBjUgU70H1wkw6TQ0-NdXTdow7OahVUfwqdpq9dcJGLBW3MdbEqWFoNgx07dUdujOo9Li5zTj4364_VNtm9Pb-sql2iOJchEdBIkzNtmGlE3jBVlmXDCtaihlbmgEZrKVSBWYNFCYa1XIBUQjRZloslLuckPfdqZ713aOpv1w3KnWoG9a-d-mynvtiJwMMZiPf6aCc3xvf-C_8AdF5oUQ</recordid><startdate>20240628</startdate><enddate>20240628</enddate><creator>Lu, Xihui</creator><creator>Wei, Jinshan</creator><creator>Lin, Hexing</creator><creator>Li, Yi</creator><creator>Li, Ya-yun</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1696-5507</orcidid></search><sort><creationdate>20240628</creationdate><title>Boron Regulated Fe Single-Atom Structures for Electrocatalytic Nitrate Reduction to Ammonia</title><author>Lu, Xihui ; Wei, Jinshan ; Lin, Hexing ; Li, Yi ; Li, Ya-yun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a229t-70b9f51cf1fb75b1a888b161dec0d950efcc97a6e4be680f1d2709a77b44573e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Xihui</creatorcontrib><creatorcontrib>Wei, Jinshan</creatorcontrib><creatorcontrib>Lin, Hexing</creatorcontrib><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Li, Ya-yun</creatorcontrib><collection>CrossRef</collection><jtitle>ACS applied nano materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Xihui</au><au>Wei, Jinshan</au><au>Lin, Hexing</au><au>Li, Yi</au><au>Li, Ya-yun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boron Regulated Fe Single-Atom Structures for Electrocatalytic Nitrate Reduction to Ammonia</atitle><jtitle>ACS applied nano materials</jtitle><addtitle>ACS Appl. Nano Mater</addtitle><date>2024-06-28</date><risdate>2024</risdate><volume>7</volume><issue>12</issue><spage>14654</spage><epage>14664</epage><pages>14654-14664</pages><issn>2574-0970</issn><eissn>2574-0970</eissn><abstract>Electrocatalytic reduction of nitrate (NO3RR) to ammonia offers a promising approach for mitigating the environmental impact of NO3 –, while simultaneously enabling the synthesis of NH3 under ambient conditions. Recently, single-atom catalysts (SACs) have been proven to have attractive activity on NO3RR, and better catalysts with enhanced activity and stability are still in demand. Here, we report the efficient boosting of NH3 production via the NO3RR using boron-doped Fe SAC (Fe-BCN). Fe-BCN is a normal 12-hedral nanoparticle with a size of 500 nm. The NH3 Faradaic efficiency of Fe-BCN reached 97.48%, with a high ammonia production rate of 2.17 mg cm–2 h–1, in an alkaline electrolyte environment at an electrode potential of −0.3 V vs reversible hydrogen electrode. Density functional theory calculations revealed the strategy of introduced B regulating the intermediate adsorption on Fe-BCN, which enhanced the NO3RR activity. Furthermore, leveraging the high NO3RR activity of Fe-BCN, a nitrate-zinc battery with a power density of 0.90 mW cm–2 was constructed by using Fe-BCN as the cathode and zinc as the anode, respectively. This research demonstrates the broad prospects of Fe-BCN in the NO3RR and provides insights for high-performance Fe SAC electrode materials.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsanm.4c02221</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1696-5507</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2574-0970
ispartof ACS applied nano materials, 2024-06, Vol.7 (12), p.14654-14664
issn 2574-0970
2574-0970
language eng
recordid cdi_crossref_primary_10_1021_acsanm_4c02221
source ACS Publications
title Boron Regulated Fe Single-Atom Structures for Electrocatalytic Nitrate Reduction to Ammonia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T14%3A43%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boron%20Regulated%20Fe%20Single-Atom%20Structures%20for%20Electrocatalytic%20Nitrate%20Reduction%20to%20Ammonia&rft.jtitle=ACS%20applied%20nano%20materials&rft.au=Lu,%20Xihui&rft.date=2024-06-28&rft.volume=7&rft.issue=12&rft.spage=14654&rft.epage=14664&rft.pages=14654-14664&rft.issn=2574-0970&rft.eissn=2574-0970&rft_id=info:doi/10.1021/acsanm.4c02221&rft_dat=%3Cacs_cross%3Ef16504996%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true