Zeolite Framework-Anchored Carbon-Doped White Graphene as Antipoisoning Cathode Materials for Proton-Exchange Membrane Fuel Cells

Efficient, robust, and highly sustainable platinum (Pt)-free electrocatalysts are pivotal for advancing the fuel cell (FC) performance. This study introduces a facile and green approach for synthesizing a rationally designed Co-based zeolite imidazole framework (ZIF) anchored onto carbon (C)-doped w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied nano materials 2024-10, Vol.7 (20), p.23454-23465
Hauptverfasser: Mane, Rupali S., Nair, Akshaya S., Jafri, R. Imran, Jha, Neetu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23465
container_issue 20
container_start_page 23454
container_title ACS applied nano materials
container_volume 7
creator Mane, Rupali S.
Nair, Akshaya S.
Jafri, R. Imran
Jha, Neetu
description Efficient, robust, and highly sustainable platinum (Pt)-free electrocatalysts are pivotal for advancing the fuel cell (FC) performance. This study introduces a facile and green approach for synthesizing a rationally designed Co-based zeolite imidazole framework (ZIF) anchored onto carbon (C)-doped white graphene (C-WG) as an electrocatalyst (Z@-C-WG) for the oxygen reduction reaction (ORR). The synergistic effects between the ZIF and C-WG yield an electrocatalyst with enriched active sites. The intrinsic dual active sites coupled with favorable physicochemical properties promote oxygen adsorption and enhance the mass transfer rate. The hybrid catalyst demonstrates significantly improved activity, stability, and poisoning resistivity compared to Pt/C. The synthesized electrocatalyst exhibits superior ORR activity with an onset potential of E on −0.967 V (E onPt/C −0.94 V) in acidic medium and E on −0.931 V (E on(Pt/C) −0.919) in alkaline medium. Validation through intrinsic parameters including electrochemical active area (ECSA), active site density (ASD), mass activity (MA), and turnover frequency (TOF) corroborates the catalyst’s enhanced performance. The stability tested for over 35 h coupled with high methanol tolerance affirms the catalyst’s robust activity. The Z@-C-WG electrocatalyst surpasses Pt/C in resisting poisoning species (CO and KSCN); also, poststripping analysis strongly confirms the presence of abundant active centers. Overall, this study offers a unique perspective toward the engineering of ORR catalyst architecture for fuel cell cathode applications.
doi_str_mv 10.1021/acsanm.4c01704
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsanm_4c01704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c964665009</sourcerecordid><originalsourceid>FETCH-LOGICAL-a159t-c8df77a313f41892c443488bf7e143d9217691d0637cc994e2339891bf4e8de83</originalsourceid><addsrcrecordid>eNp1kM1LwzAYxoMoOOaunnMWOpMmW5LjqNsUJnpQBC8lTd-unW1Skg716H9uxnbw4un9-j0PLw9C15RMKUnprTZB227KDaGC8DM0SmeCJ0QJcv6nv0STEHaEEKronBEyQj_v4NpmALzyuoNP5z-ShTW181DiTPvC2eTO9XF4qw_U2uu-BgtYB7ywQ9O7Jjjb2G2Eh9qVgB_1AL7RbcCV8_jZuyFaLL9Mre02XqErvI761R5anEHbhit0UUUcJqc6Rq-r5Ut2n2ye1g_ZYpNoOlNDYmRZCaEZZRWnUqWGc8alLCoBlLNSpVTMFS3JnAljlOKQMqakokXFQZYg2RhNj77GuxA8VHnvm07775yS_JBhfswwP2UYBTdHQdznO7f3Nr73H_wLe9F00w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Zeolite Framework-Anchored Carbon-Doped White Graphene as Antipoisoning Cathode Materials for Proton-Exchange Membrane Fuel Cells</title><source>American Chemical Society Journals</source><creator>Mane, Rupali S. ; Nair, Akshaya S. ; Jafri, R. Imran ; Jha, Neetu</creator><creatorcontrib>Mane, Rupali S. ; Nair, Akshaya S. ; Jafri, R. Imran ; Jha, Neetu</creatorcontrib><description>Efficient, robust, and highly sustainable platinum (Pt)-free electrocatalysts are pivotal for advancing the fuel cell (FC) performance. This study introduces a facile and green approach for synthesizing a rationally designed Co-based zeolite imidazole framework (ZIF) anchored onto carbon (C)-doped white graphene (C-WG) as an electrocatalyst (Z@-C-WG) for the oxygen reduction reaction (ORR). The synergistic effects between the ZIF and C-WG yield an electrocatalyst with enriched active sites. The intrinsic dual active sites coupled with favorable physicochemical properties promote oxygen adsorption and enhance the mass transfer rate. The hybrid catalyst demonstrates significantly improved activity, stability, and poisoning resistivity compared to Pt/C. The synthesized electrocatalyst exhibits superior ORR activity with an onset potential of E on −0.967 V (E onPt/C −0.94 V) in acidic medium and E on −0.931 V (E on(Pt/C) −0.919) in alkaline medium. Validation through intrinsic parameters including electrochemical active area (ECSA), active site density (ASD), mass activity (MA), and turnover frequency (TOF) corroborates the catalyst’s enhanced performance. The stability tested for over 35 h coupled with high methanol tolerance affirms the catalyst’s robust activity. The Z@-C-WG electrocatalyst surpasses Pt/C in resisting poisoning species (CO and KSCN); also, poststripping analysis strongly confirms the presence of abundant active centers. Overall, this study offers a unique perspective toward the engineering of ORR catalyst architecture for fuel cell cathode applications.</description><identifier>ISSN: 2574-0970</identifier><identifier>EISSN: 2574-0970</identifier><identifier>DOI: 10.1021/acsanm.4c01704</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied nano materials, 2024-10, Vol.7 (20), p.23454-23465</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a159t-c8df77a313f41892c443488bf7e143d9217691d0637cc994e2339891bf4e8de83</cites><orcidid>0000-0002-0357-0290 ; 0000-0002-4540-1778</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsanm.4c01704$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsanm.4c01704$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Mane, Rupali S.</creatorcontrib><creatorcontrib>Nair, Akshaya S.</creatorcontrib><creatorcontrib>Jafri, R. Imran</creatorcontrib><creatorcontrib>Jha, Neetu</creatorcontrib><title>Zeolite Framework-Anchored Carbon-Doped White Graphene as Antipoisoning Cathode Materials for Proton-Exchange Membrane Fuel Cells</title><title>ACS applied nano materials</title><addtitle>ACS Appl. Nano Mater</addtitle><description>Efficient, robust, and highly sustainable platinum (Pt)-free electrocatalysts are pivotal for advancing the fuel cell (FC) performance. This study introduces a facile and green approach for synthesizing a rationally designed Co-based zeolite imidazole framework (ZIF) anchored onto carbon (C)-doped white graphene (C-WG) as an electrocatalyst (Z@-C-WG) for the oxygen reduction reaction (ORR). The synergistic effects between the ZIF and C-WG yield an electrocatalyst with enriched active sites. The intrinsic dual active sites coupled with favorable physicochemical properties promote oxygen adsorption and enhance the mass transfer rate. The hybrid catalyst demonstrates significantly improved activity, stability, and poisoning resistivity compared to Pt/C. The synthesized electrocatalyst exhibits superior ORR activity with an onset potential of E on −0.967 V (E onPt/C −0.94 V) in acidic medium and E on −0.931 V (E on(Pt/C) −0.919) in alkaline medium. Validation through intrinsic parameters including electrochemical active area (ECSA), active site density (ASD), mass activity (MA), and turnover frequency (TOF) corroborates the catalyst’s enhanced performance. The stability tested for over 35 h coupled with high methanol tolerance affirms the catalyst’s robust activity. The Z@-C-WG electrocatalyst surpasses Pt/C in resisting poisoning species (CO and KSCN); also, poststripping analysis strongly confirms the presence of abundant active centers. Overall, this study offers a unique perspective toward the engineering of ORR catalyst architecture for fuel cell cathode applications.</description><issn>2574-0970</issn><issn>2574-0970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LwzAYxoMoOOaunnMWOpMmW5LjqNsUJnpQBC8lTd-unW1Skg716H9uxnbw4un9-j0PLw9C15RMKUnprTZB227KDaGC8DM0SmeCJ0QJcv6nv0STEHaEEKronBEyQj_v4NpmALzyuoNP5z-ShTW181DiTPvC2eTO9XF4qw_U2uu-BgtYB7ywQ9O7Jjjb2G2Eh9qVgB_1AL7RbcCV8_jZuyFaLL9Mre02XqErvI761R5anEHbhit0UUUcJqc6Rq-r5Ut2n2ye1g_ZYpNoOlNDYmRZCaEZZRWnUqWGc8alLCoBlLNSpVTMFS3JnAljlOKQMqakokXFQZYg2RhNj77GuxA8VHnvm07775yS_JBhfswwP2UYBTdHQdznO7f3Nr73H_wLe9F00w</recordid><startdate>20241025</startdate><enddate>20241025</enddate><creator>Mane, Rupali S.</creator><creator>Nair, Akshaya S.</creator><creator>Jafri, R. Imran</creator><creator>Jha, Neetu</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0357-0290</orcidid><orcidid>https://orcid.org/0000-0002-4540-1778</orcidid></search><sort><creationdate>20241025</creationdate><title>Zeolite Framework-Anchored Carbon-Doped White Graphene as Antipoisoning Cathode Materials for Proton-Exchange Membrane Fuel Cells</title><author>Mane, Rupali S. ; Nair, Akshaya S. ; Jafri, R. Imran ; Jha, Neetu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a159t-c8df77a313f41892c443488bf7e143d9217691d0637cc994e2339891bf4e8de83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mane, Rupali S.</creatorcontrib><creatorcontrib>Nair, Akshaya S.</creatorcontrib><creatorcontrib>Jafri, R. Imran</creatorcontrib><creatorcontrib>Jha, Neetu</creatorcontrib><collection>CrossRef</collection><jtitle>ACS applied nano materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mane, Rupali S.</au><au>Nair, Akshaya S.</au><au>Jafri, R. Imran</au><au>Jha, Neetu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zeolite Framework-Anchored Carbon-Doped White Graphene as Antipoisoning Cathode Materials for Proton-Exchange Membrane Fuel Cells</atitle><jtitle>ACS applied nano materials</jtitle><addtitle>ACS Appl. Nano Mater</addtitle><date>2024-10-25</date><risdate>2024</risdate><volume>7</volume><issue>20</issue><spage>23454</spage><epage>23465</epage><pages>23454-23465</pages><issn>2574-0970</issn><eissn>2574-0970</eissn><abstract>Efficient, robust, and highly sustainable platinum (Pt)-free electrocatalysts are pivotal for advancing the fuel cell (FC) performance. This study introduces a facile and green approach for synthesizing a rationally designed Co-based zeolite imidazole framework (ZIF) anchored onto carbon (C)-doped white graphene (C-WG) as an electrocatalyst (Z@-C-WG) for the oxygen reduction reaction (ORR). The synergistic effects between the ZIF and C-WG yield an electrocatalyst with enriched active sites. The intrinsic dual active sites coupled with favorable physicochemical properties promote oxygen adsorption and enhance the mass transfer rate. The hybrid catalyst demonstrates significantly improved activity, stability, and poisoning resistivity compared to Pt/C. The synthesized electrocatalyst exhibits superior ORR activity with an onset potential of E on −0.967 V (E onPt/C −0.94 V) in acidic medium and E on −0.931 V (E on(Pt/C) −0.919) in alkaline medium. Validation through intrinsic parameters including electrochemical active area (ECSA), active site density (ASD), mass activity (MA), and turnover frequency (TOF) corroborates the catalyst’s enhanced performance. The stability tested for over 35 h coupled with high methanol tolerance affirms the catalyst’s robust activity. The Z@-C-WG electrocatalyst surpasses Pt/C in resisting poisoning species (CO and KSCN); also, poststripping analysis strongly confirms the presence of abundant active centers. Overall, this study offers a unique perspective toward the engineering of ORR catalyst architecture for fuel cell cathode applications.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsanm.4c01704</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0357-0290</orcidid><orcidid>https://orcid.org/0000-0002-4540-1778</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2574-0970
ispartof ACS applied nano materials, 2024-10, Vol.7 (20), p.23454-23465
issn 2574-0970
2574-0970
language eng
recordid cdi_crossref_primary_10_1021_acsanm_4c01704
source American Chemical Society Journals
title Zeolite Framework-Anchored Carbon-Doped White Graphene as Antipoisoning Cathode Materials for Proton-Exchange Membrane Fuel Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A15%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zeolite%20Framework-Anchored%20Carbon-Doped%20White%20Graphene%20as%20Antipoisoning%20Cathode%20Materials%20for%20Proton-Exchange%20Membrane%20Fuel%20Cells&rft.jtitle=ACS%20applied%20nano%20materials&rft.au=Mane,%20Rupali%20S.&rft.date=2024-10-25&rft.volume=7&rft.issue=20&rft.spage=23454&rft.epage=23465&rft.pages=23454-23465&rft.issn=2574-0970&rft.eissn=2574-0970&rft_id=info:doi/10.1021/acsanm.4c01704&rft_dat=%3Cacs_cross%3Ec964665009%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true